restart;x:=t->t^3/(3*(abs(t)-2));y:=t->t^2/2-3*abs(t);NiM+SSJ4RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiY5JCIiJCwmLUkkYWJzR0kqcHJvdGVjdGVkR0YyNiNGLUYuISInIiIiISIiRiVGJUYlNiM+SSJ5RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCYqJDkkIiIjIyIiIkYvLUkkYWJzR0kqcHJvdGVjdGVkR0Y0NiNGLiEiJEYlRiVGJQ==R\351duction du domaine d'\351tude[x(-t),y(-t)]=[-x(t),y(t)];NiMvNyQsJComSSJ0RzYiIiIkLCYtSSRhYnNHSSpwcm90ZWN0ZWRHRi02I0YnRikhIiciIiIhIiJGMSwmKiRGJyIiIyNGMEY0RishIiRGJA==evalb(%);NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ=On en d\351duit la r\351duction du domaine d'\351tude aux param\350tres positifs, le reste du support s'obtient par sym\351trie / \340 (Oy)Vecteur vitesseassume(t>=0);"x'(t)"=factor(D(x)(t));"y'(t)"=factor(D(y)(t));NiMvUSZ4Jyh0KTYiLCQqKEkjdHxpckdGJSIiIywmRigiIiIhIiRGK0YrLCZGKEYrISIjRitGLiNGKSIiJA==NiMvUSZ5Jyh0KTYiLCZJI3R8aXJHRiUiIiIhIiRGKA==Au point stationnaire M(3) on a une tangente de pente 1/6ta:=factor((y(t)-y(3))/(x(t)-x(3))):('y'(t)-'y'(3))/('x'(t)-'x'(3))=ta;Limit(('y'(t)-'y'(3))/('x'(t)-'x'(3)),t=3)=limit(ta,t=3);NiMvKiYsJi1JInlHNiI2I0kjdHxpckdGKCIiIi1GJzYjIiIkISIiRissJi1JInhHRihGKUYrLUYyRi1GL0YvLCQqJiwmRipGKyEiI0YrRissJkYqRisiIidGK0YvI0YuIiIjNiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkKiYsJi1JInlHRik2I0kjdHxpckdGKSIiIi1GLjYjIiIkISIiRjEsJi1JInhHRilGL0YxLUY4RjNGNUY1L0YwRjQjRjEiIic=Au point M(0) on a une tangente verticaleta:=factor((y(t)-y(0))/(x(t)-x(0))):('y'(t)-'y'(0))/('x'(t)-'x'(0))=ta;Limit(abs(('y'(t)-'y'(0))/('x'(t)-'x'(0))),t=0)=limit(abs(ta),t=0);NiMvKiYsJi1JInlHNiI2I0kjdHxpckdGKCIiIi1GJzYjIiIhISIiRissJi1JInhHRihGKUYrLUYyRi1GL0YvLCQqKEYqISIjLCZGKkYrISInRitGKywmRipGK0Y2RitGKyMiIiQiIiM=NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkLUkkYWJzR0YnNiMqJiwmLUkieUdGKTYjSSN0fGlyR0YpIiIiLUYxNiMiIiEhIiJGNCwmLUkieEdGKUYyRjQtRjtGNkY4RjgvRjNGN0kpaW5maW5pdHlHRic=Quelques valeurs caract\351ristiquest_0:=-3: M(t_0)=(x(t_0),y(t_0));NiMvLUkiTUc2IjYjISIkNiQhIiojRioiIiM=t_0:=0: M(t_0)=(x(t_0),y(t_0));NiMvLUkiTUc2IjYjIiIhNiRGKEYot_0:=3: M(t_0)=(x(t_0),y(t_0));NiMvLUkiTUc2IjYjIiIkNiQiIiojISIqIiIjTableau de variation
<Text-field layout="Heading 1" style="Heading 1"/>H:=t->abs(t)/t:U:=t->H(t)/2:xp:=H@D(x):yp:=U@D(y):
plot([xp,yp],thickness=[3,3],color=[green,red]);LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JTdjbzckISM1JCIiIiIiITckJCErPHAwayYqISIqJCIrKysrKzVGMTckJCErcl51JT0qRjFGMjckJCErVSVwImUoKUYxRjI3JCQhKyM0bShHJClGMUYyNyQkIStAT1MsekYxRjI3JCQhKy9SPTB2RjFGMjckJCErUDgjXDQoRjFGMjckJCErL3NpcW1GMUYyNyQkISsoeSRwWmlGMUYyNyQkISskeWFFImVGMUYyNyQkISsiPnMlSGFGMUYyNyQkIStdJCo0KSpcRjFGMjckJCErXV8mXGMlRjFGMjckJCErXTFhWlRGMUYyNyQkISsvIylbb1BGMUYyNyQkISslPkJKYSRGMUYyNyQkISskPWV4SiRGMUYyNyQkISs/OElBS0YxRjI3JCQhK2VXJW83JEYxRjI3JCQhK0ZnNnpJRjFGMjckJCErJ2YoUUpJRjFGMjckJCErKVtiJT5JRjFGMjckJCErIVFCdiskRjFGMjckJCErczdmJipIRjEkISsrKysrNUYxNyQkIStrImZPKUhGMUZjcDckJCErW1x6ZkhGMUZjcDckJCErTDIkZiRIRjFGY3A3JCQhKyZvX1FyI0YxRmNwNyQkIStQWXgiXCNGMUZjcDckJCErTDdpKTQjRjFGY3A3JCQhK1AncHNtIkYxRmNwNyQkISs3NF9jN0YxRmNwNyQkISozeCV6IylGMUZjcDckJCEqP1BRTSVGMUZjcDckJCEoInpyKSpGMUZjcDckJCIpIW8ySiUhIilGY3A3JCQiKSVRI1wiKUZpckZjcDckJCIqOypbSDdGaXJGY3A3JCQiKnF2eGwiRmlyRmNwNyQkIipgcW4yI0ZpckZjcDckJCIqY3BAWyNGaXJGY3A3JCQiKz9HQjJGRjFGY3A3JCQiKjMnSEtIRmlyRmNwNyQkIitbWmRkSEYxRmNwNyQkIis7TSZHKUhGMUZjcDckJCIrXUZcJipIRjFGY3A3JCQiKyUzSyIzSUYxRjI3JCQiKz05eD9JRjFGMjckJCIrXzJUTElGMUYyNyQkIispM29SMyRGMUYyNyQkIitEYV9NSkYxRjI3JCQiKyk0U2NCJEYxRjI3JCQiKnhhbkwkRmlyRjI3JCQiK2d4bl9ORjFGMjckJCIqdisnb1BGaXJGMjckJCIqUzwqZlRGaXJGMjckJCIqJilIeGUlRmlyRjI3JCQiKi5vLSpcRmlyRjI3JCQiKlRPNVQmRmlyRjI3JCQiKlU5QyNlRmlyRjI3JCQiKjEqM2BpRmlyRjI3JCQiKiQqenltJ0ZpckYyNyQkIipeaj80KEZpckYyNyQkIipqTUZeKEZpckYyNyQkIipxKEcqKnlGaXJGMjckJCIqOUBCTSlGaXJGMjckJCIqYHYmUSgpRmlyRjI3JCQiKk9sNTsqRmlyRjI3JCQiKi9VYWMqRmlyRjI3JCIjNUYrLSUqVEhJQ0tORVNTRzYjIiIkLSUmQ09MT1JHNiYlJFJHQkckRi0hIiIkRl55Rmh5Rmd5LUYmNiU3XnA3JEYqJCErKysrK11GKjckRi9GXno3JEY1Rl56NyRGOEZeejckRjtGXno3JEY+Rl56NyRGQUZeejckRkRGXno3JEZHRl56NyRGSkZeejckRk1GXno3JEZQRl56NyRGU0ZeejckRlZGXno3JEZZRl56NyRGZm5GXno3JEZpbkZeejckRlxvRl56NyRGX29GXno3JEZib0ZeejckRmVvRl56NyRGaG9GXno3JEZbcEZeejckRl5wRl56NyRGYXAkIisrKysrXUYqNyRGZnBGaFtsNyRGaXBGaFtsNyRGXHFGaFtsNyRGX3FGaFtsNyRGYnFGaFtsNyRGZXFGaFtsNyRGaHFGaFtsNyRGW3JGaFtsNyRGXnJGaFtsNyRGYXJGaFtsNyQkIStidkZAQUYqRmhbbDckRmRyRmhbbDckJCIrdkMmeSFSISM3Rl56NyQkIismZlwobzwhIzZGXno3JCQiK1VScllKRl9dbEZeejckJCIrIUh5WV8lRl9dbEZeejckJCIrJilwZyFHKEZfXWxGXno3JCQiK29ObC41RipGXno3JCQiKzEkUltiIkYqRl56NyQkIitYXS0xQEYqRl56NyQkIitBbFIzS0YqRl56NyRGZ3JGXno3JCQiKytLK0lpRipGXno3JEZbc0ZeejckRl5zRl56NyRGYXNGXno3JEZkc0ZeejckRmdzRl56NyRGanNGXno3JEZddEZeejckRmB0Rl56NyRGY3RGXno3JEZmdEZeejckRml0RmhbbDckRlx1RmhbbDckRl91RmhbbDckRmJ1RmhbbDckRmV1RmhbbDckRmh1RmhbbDckRlt2RmhbbDckRl52RmhbbDckRmF2RmhbbDckRmR2RmhbbDckRmd2RmhbbDckRmp2RmhbbDckRl13RmhbbDckRmB3RmhbbDckRmN3RmhbbDckRmZ3RmhbbDckRml3RmhbbDckRlx4RmhbbDckRl94RmhbbDckRmJ4RmhbbDckRmV4RmhbbDckRmh4RmhbbDckRlt5RmhbbDckRl55RmhbbEZfeS1GZHk2JkZmeUZpeUZneUZneS0lK0FYRVNMQUJFTFNHNiRRITYiRmBhbC0lJVZJRVdHNiQ7JCEkKyJGaHkkRl55Ri07JCEkLyIhIiMkIiQvIkZcYmw=En vert le signe de x'(t)En rouge le signe de y'(t)Branches infiniesEtude en 2Limit('x'(t),t=2,right)=limit(x(t),t=2,right);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkieEdGKTYjSSN0fGlyR0YpL0YuIiIjSSZyaWdodEdGKUkpaW5maW5pdHlHRic=Limit('x'(t),t=2,left)=limit(x(t),t=2,left);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkieEdGKTYjSSN0fGlyR0YpL0YuIiIjSSVsZWZ0R0YpLCRJKWluZmluaXR5R0YnISIiLimit('y'(t),t=2)=limit(y(t),t=2);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkLUkieUdGKTYjSSN0fGlyR0YpL0YuIiIjISIlD'o\371 une asymptote horizontale d'\351quation y=-4La position relative \351tant donn\351 par le signe de la diff\351rence dedelta:=factor(y(t)+4);NiM+SSZkZWx0YUc2IiwkKiYsJkkjdHxpckdGJSIiIiEiI0YqRiosJkYpRiohIiVGKkYqI0YqIiIjpos:=H(delta):plot(pos,t=1..3,thickness=2);LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdobjckJCIiIiIiIUYqNyQkIjNBTExMM1ZmVjUhIzxGKjckJCIzc21tIkhbRDozIkYwRio3JCQiM1hMTCRlMCQ9QzZGMEYqNyQkIjNRTEwkM1JCcjsiRjBGKjckJCIzaW1tInpqZik0N0YwRio3JCQiM1dMTGU0O1tcN0YwRio3JCQiMy0rK0RteV0hSCJGMEYqNyQkIjM+TExlenMkSEwiRjBGKjckJCIzMSsrREAxQnY4RjBGKjckJCIzcG1tbUBYdD05RjBGKjckJCIzTUxMJDN5X3FYIkYwRio3JCQiMycqKioqKipcMSE+KzpGMEYqNyQkIjMqKioqKioqXFovTmEiRjBGKjckJCIzNSsrK05mQyZlIkYwRio3JCQiM0xMTGV6NjpCO0YwRio3JCQiM19tbW0iPUMjbztGMEYqNyQkIjNnbW1tRXBTMTxGMEYqNyQkIjMlKSoqKlxpYEEzdiJGMEYqNyQkIjNZbW1td3k4IXoiRjBGKjckJCIzLysrRE9JRkw9RjBGKjckJCIzISoqKipcKDN6TXU9RjBGKjckJCIzZW1tO0hfPzw+RjBGKjckJCIzbW1tInppaGwmPkYwRio3JCQiMzUrXVBDc3l4PkYwRio3JCQiM0tMTCQzI0csKio+RjBGKjckJCIzIzNGcF55IVIrP0YwJCEiIkYsNyQkIjNMM19dXChvPCsjRjBGZnA3JCQiMyVlOVRRcllKKyNGMEZmcDckJCIzTiQzeCJ5WV8vP0YwRmZwNyQkIjNQZSpbb2chRzI/RjAkITNBKysrKysrKzVGMDckJCIzUkwzX05sLjU/RjBGZnA3JCQiM1YkZWtHUltiLCNGMEZmcDckJCIzWUwkMy1EZzUtI0YwRmZwNyQkIjNhTGUqWydSM0s/RjBGZnA3JCQiMzxMTGV6dzVWP0YwRmZwNyQkIjM/bW1tSitJaT9GMEZmcDckJCIzbyoqKlxQUSNcIjMjRjBGZnA3JCQiM0JMTCRlIipbSDcjRjBGZnA3JCQiMyMqKioqKioqcHZ4bEBGMEZmcDckJCIzeioqKipcX3FuMkFGMEZmcDckJCIzJSkqKipcaSZwQFtBRjBGZnA3JCQiMyMpKioqKlwyJ0hLSCNGMEZmcDckJCIzX21tbXdhbkxCRjBGZnA3JCQiM3UqKioqKlwyZ29QI0YwRmZwNyQkIjNDTExlUjwqZlQjRjBGZnA3JCQiMycqKioqKipcKUh4ZUNGMEZmcDckJCIzQ21tIkghby0qXCNGMEZmcDckJCIzKSkqKipcN2suNmEjRjBGZnA3JCQiM2VtbW1UOUMjZSNGMEZmcDckJCIzIioqKipcaSEqM2BpI0YwRmZwNyQkIjM7TExMJCp6eW1FRjBGZnA3JCQiMzBMTCQzTjEjNEZGMEZmcDckJCIza21tIkhZdDd2I0YwRmZwNyQkIjMlKioqKioqKnAoRyoqeSNGMEZmcDckJCIzVW1tOzlAQk1HRjBGZnA3JCQiMy9MTExgdiZRKEdGMEZmcDckJCIzMCsrRE9sNTtIRjBGZnA3JCQiMy8rK3YuVWFjSEYwRmZwNyQkIiIkRixGZnAtJSZDT0xPUkc2JiUkUkdCRyQiIzVGZ3AkRixGZ3BGY3ctJStBWEVTTEFCRUxTRzYkUSN0fGlyNiJRIUZody0lJVZJRVdHNiQ7RmF3JCIjSUZncDskISQvIiEiIyQiJC8iRmN4LSUqVEhJQ0tORVNTRzYjIiIjD'o\371 la courbe est au dessus pour t<2 et en dessous pour t>2Etude en +inifinityLimit('x'(t),t=infinity)=limit(x(t),t=infinity);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkLUkieEdGKTYjSSN0fGlyR0YpL0YuSSlpbmZpbml0eUdGJ0YwLimit('y'(t),t=infinity)=limit(y(t),t=infinity);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkLUkieUdGKTYjSSN0fGlyR0YpL0YuSSlpbmZpbml0eUdGJ0YwD'o\371 une branche infinie lorsque t->+infini'y'(t)/'x'(t)=factor(y(t)/x(t));NiMvKiYtSSJ5RzYiNiNJI3R8aXJHRiciIiItSSJ4R0YnRighIiIsJCooRikhIiMsJkYpRiohIidGKkYqLCZGKUYqRjBGKkYqIyIiJCIiIw==Limit('y'(t)/'x'(t),t=infinity)=limit(y(t)/x(t),t=infinity);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkKiYtSSJ5R0YpNiNJI3R8aXJHRikiIiItSSJ4R0YpRi4hIiIvRi9JKWluZmluaXR5R0YnIyIiJCIiIw==D'o\371 une direction asymptotique d'\351quation y=3/2'y'(t)-3*'x'(t)/2 =factor(y(t)-3*x(t)/2);NiMvLCYtSSJ5RzYiNiNJI3R8aXJHRiciIiItSSJ4R0YnRigjISIkIiIjLCQqKEYpRiosJkYpRi9GLkYqRiosJkYpRiohIiNGKiEiIkY0Limit('y'(t)-3*'x'(t)/2,t=infinity)=limit(y(t)-3*x(t)/2,t=infinity);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkLCYtSSJ5R0YpNiNJI3R8aXJHRikiIiItSSJ4R0YpRi4jISIkIiIjL0YvSSlpbmZpbml0eUdGJywkRjchIiI=Il s'agit donc d'une branche parabolique de direction y=3/2Support de la courbe
<Text-field layout="Heading 1" style="Heading 1"/>t:='t':with(plots):Warning, the name changecoords has been redefinedNiM3Zm5JKGFuaW1hdGVHNiJJKmFuaW1hdGUzZEdGJUktYW5pbWF0ZWN1cnZlR0YlSSZhcnJvd0dGJUktY2hhbmdlY29vcmRzR0koX3N5c2xpYkdGJUksY29tcGxleHBsb3RHRiVJLmNvbXBsZXhwbG90M2RHRiVJKmNvbmZvcm1hbEdGJUksY29uZm9ybWFsM2RHRiVJLGNvbnRvdXJwbG90R0YlSS5jb250b3VycGxvdDNkR0YlSSpjb29yZHBsb3RHRiVJLGNvb3JkcGxvdDNkR0YlSS1jeWxpbmRlcnBsb3RHRiVJLGRlbnNpdHlwbG90R0YlSShkaXNwbGF5R0YlSSpkaXNwbGF5M2RHRiVJKmZpZWxkcGxvdEdGJUksZmllbGRwbG90M2RHRiVJKWdyYWRwbG90R0YlSStncmFkcGxvdDNkR0YlSSxncmFwaHBsb3QzZEdGJUktaW1wbGljaXRwbG90R0YlSS9pbXBsaWNpdHBsb3QzZEdGJUkoaW5lcXVhbEdGJUksaW50ZXJhY3RpdmVHRiVJMmludGVyYWN0aXZlcGFyYW1zR0YlSS1saXN0Y29udHBsb3RHRiVJL2xpc3Rjb250cGxvdDNkR0YlSTBsaXN0ZGVuc2l0eXBsb3RHRiVJKWxpc3RwbG90R0YlSStsaXN0cGxvdDNkR0YlSStsb2dsb2dwbG90R0YlSShsb2dwbG90R0YlSSttYXRyaXhwbG90R0YlSSltdWx0aXBsZUdGJUkob2RlcGxvdEdGJUkncGFyZXRvR0YlSSxwbG90Y29tcGFyZUdGJUkqcG9pbnRwbG90R0YlSSxwb2ludHBsb3QzZEdGJUkqcG9sYXJwbG90R0YlSSxwb2x5Z29ucGxvdEdGJUkucG9seWdvbnBsb3QzZEdGJUk0cG9seWhlZHJhX3N1cHBvcnRlZEdGJUkucG9seWhlZHJhcGxvdEdGJUkncmVwbG90R0YlSSpyb290bG9jdXNHRiVJLHNlbWlsb2dwbG90R0YlSStzZXRvcHRpb25zR0YlSS1zZXRvcHRpb25zM2RHRiVJK3NwYWNlY3VydmVHRiVJMXNwYXJzZW1hdHJpeHBsb3RHRiVJK3NwaGVyZXBsb3RHRiVJKXN1cmZkYXRhR0YlSSl0ZXh0cGxvdEdGJUkrdGV4dHBsb3QzZEdGJUkpdHViZXBsb3RHRiU=support_plus:=plot([x(t),y(t),t=0..10],-30..30,-5..5, color=blue,linestyle=DASHDOT,thickness=2):support_moins:=plot([x(t),y(t),t=-10..0],-30..30,-5..5, color=red,linestyle=SOLID,thickness=2):asymptote_plus:=plot(3*t/2,t=-30..30,color=green,linestyle=DASH):asymptote_moins:=plot(-3*t/2,t=-30..30,color=green,linestyle=SOLID):asymptote_horizontale:=plot(-4,t=-30..30,color=magenta,linestyle=SOLID,thickness=3):tangente_plus:=plot(t/6-6,t=-30..30,color=black,linestyle=DASH):tangente_moins:=plot(-t/6-6,t=-30..30,color=black,linestyle=SOLID):
display(support_plus, support_moins,asymptote_plus,asymptote_moins,asymptote_horizontale,tangente_plus,tangente_moins);LSUlUExPVEc2Ky0lJ0NVUlZFU0c2JjdqcDckJCIiIUYrRio3JCQhM1g2K2grNjpQPiEjPyQhMz8jRzxeRyllLGohIz03JCQhMyM9TDptOUl5VCIhIz4kITNoYCs+Kj0tKVI2ISM8NyQkITMlPVtyZlImMyd5JkY2JCEzMSFwW2IleigqcDtGOTckJCEzU14+ZUAqUS5uIkYyJCEzbTZZWDpJc2RARjk3JCQhM0VdRSopKlI1MjAlRjIkITNPcCY9TUEiUShmI0Y5NyQkITNNdDIjPSVcOUZmRjIkITM1dSZ5TiI+cSZ5I0Y5NyQkITNBbEFTNHomcGYpRjIkITNnbGp1QzJAa0hGOTckJCEzV2dHZExmZ2g3RjkkITNLIlFtdWUxKFFKRjk3JCQhMyM9X05AIjQqZic9RjkkITN0LGZMUkZvLUxGOTckJCEzRTdLJzMnSFJmR0Y5JCEzISpvdyNIYyw3WSRGOTckJCEzK2IuQkdJIWZlJUY5JCEzSzxjLyN6byUzT0Y5NyQkITNlbTc5IWUuJ3pmRjkkITMlRy16QSVcbXhPRjk3JCQhM08oUlhsZCMqcDApRjkkITNsJWZtcD9tU3UkRjk3JCQhM3VEJTMhXG9LPiYqRjkkITNNJHBJc3Y9aXgkRjk3JCQhM000O0w3XkxWNiEjOyQhM2ZMJDNoZXN3IVFGOTckJCEzK2YwKDQlZncuOUZjcCQhMydcXipmJHBGJVFRRjk3JCQhMylmR01nTmF1eCJGY3AkITMhekIvKHpTW29RRjk3JCQhM1N3d1xcI1suLyNGY3AkITNZZzltSi5uJClRRjk3JCQhMycqPk0heSF5InpQI0ZjcCQhMykzJClSL3dyJykqUUY5NyQkITN5YV0qZlEqSCZlI0ZjcCQhMyhcJXA4bUo1MVJGOTckJCEzci4rJVw6T28jR0ZjcCQhM2VYJFJnTylbOFJGOTckJCEzTEI2Ok08bTZKRmNwJCEzZkxxOWd0IzMjUkY5NyQkITNJYGZyOFpbX01GY3AkITM3MytZWyw3R1JGOTckJCEzLSJlYyhmdV9uUUZjcCQhM0dvI3k0dG1gJFJGOTckJCEzT0xBRCo9ISlRUSVGY3AkITMmXCI9cTJyY1VSRjk3JCQhM19uTGFdRGtWXUZjcCQhM1tcMWp5N3NcUkY5NyQkITNRMl9qOysqZiJmRmNwJCEzM3Fad1YjSG8mUkY5NyQkITNKVStYdjQ2QnJGY3AkITN3d1Q1LjUqUSdSRjk3JCQhM3pfI1t1U0RJISopRmNwJCEzXXApW21iMTQoUkY5NyQkITNLMEpZXXUlKnk2ISM6JCEza1wpKVIvZih5KFJGOTckJCEzbjI9VyJSNXlzIkZfdSQhM3c7VE5ZISp6JSlSRjk3JCQhMy9vcktdXi14SkZfdSQhM1twWV4jKWZuIipSRjk3JCQhMyFIOTVDKFs1JHkiISM5JCEzdTMwKUdyMSYpKlJGOTckJCIzI1s4bW1FO2wxJkZfdSQhMydcal51QiJIMFNGOTckJCIzKWVGZSlHLmZWQUZfdSQhMyFvL0dpYkg/LCVGOTckJCIzTXhVMndJSF45Rl91JCEzaFgoNCNwO3M9U0Y5NyQkIjNVLlddSyo+I3k1Rl91JCEzRUtuUnd2T0RTRjk3JCQiMyp5JGVAXUEnR2gpRmNwJCEzNS8hKnl4cyc+LiVGOTckJCIzd110S1BqZCU+KEZjcCQhMyFIYydRdDJfUVNGOTckJCIzO3N2dUJJLyY+J0ZjcCQhM3gyJSo9aiFHXS8lRjk3JCQiM0liPWxrMiFHWCZGY3AkITNnUnY+WiIqW15TRjk3JCQiMyFHSiIzc0YlKnpbRmNwJCEzSWY0VERTIXowJUY5NyQkIjNxSnhvJT05WFUlRmNwJCEzR2onSHlwc1UxJUY5NyQkIjMhM0RIPV9QUTAlRmNwJCEzNWJPWGteZnFTRjk3JCQiM0shNCwibzJMWVBGY3AkITMrTEhHRDkobzIlRjk3JCQiM2Fjay0pZW1yWyRGY3AkITMneVw8LlssSjMlRjk3JCQiM1M1eCY9XkBlRSRGY3AkITMhKVt0YkhgRyozJUY5NyQkIjNpcXRGIUdXNnAjRmNwJCEzKXk9I0g0VHE1VEY5NyQkIjNWOSFwW2w5RUojRmNwJCEzNVU/a1EkXDo4JUY5NyQkIjM9MV8pR3QyXi8jRmNwJCEzZTVwZzw1Iz06JUY5NyQkIjMnKWY5JmYpemBZPUZjcCQhM1Ujeic9WSI+OjwlRjk3JCQiM2diYW0qeiJ6czpGY3AkITN4KmYiPl9aPjRVRjk3JCQiM0MqZiYqKSo+c1hSIkZjcCQhM1Fpa2xjaGRXVUY5NyQkIjNrKVtpZ3hHQDsiRmNwJCEzKzxgIkdeU2VKJUY5NyQkIjMpZmBtQW93My8iRmNwJCEzKyk+VDRydWFQJUY5NyQkIjNoZjhGTC06QiQqRjkkITNRIT0obyY+LixZJUY5NyQkIjNsQTwvMDpfOCIqRjkkITNFK153Q2Y4JVslRjk3JCQiMzJqSW06P1s8ISpGOSQhM18ocHUmcCp5c1wlRjk3JCQiMyNRZFh6I3pILCEqRjkkITNjZSRlOWx6KCpcJUY5NyQkIjNpInAmZkg3XE8hKkY5JCEzS18oW2dHK0xcJUY5NyQkIjMjR21EP1FqLEYqRjkkITMsPypbSEU9PVclRjk3JCQiM2lkRXBoMTAoZSpGOSQhMz1LcFl1JnAlZVZGOTckJCIzYmlnPUYqNGErIkZjcCQhMzhvKikpPi5kY0AlRjk3JCQiMyE+RjMtSyJvYDVGY3AkITN1VSczI1tbNFtTRjk3JCQiM3pAbzdDXSFHNiJGY3AkITN0RVEpPjgnej5RRjk3JCQiMyttMno3ekd1NkZjcCQhM3VxaTA3YDtmTkY5NyQkIjMpZjc1W0RUS0MiRmNwJCEzQUpsT0swRVVLRjk3JCQiMzxPLSQ0OEEwSiJGY3AkITNNMXhyb3Z6NUhGOTckJCIzMSRvVUMkPTEoUSJGY3AkITNLR0c4NSdmKTRERjk3JCQiMyc9PjxAYyVwcTlGY3AkITNRQyV5TyFbcFg/Rjk3JCQiM0coPjwqZSZ5bmEiRmNwJCEzKD1HJSlbYmo/ZyJGOTckJCIzOyl5dW55bUFqIkZjcCQhMztqI2ZHUmI6MyJGOTckJCIzJlxvSTMnSDVDPEZjcCQhM09uPWhndydwKVxGMjckJCIzIXpoTUxjR3QiPUZjcCQiM3EoKWYpbyxEKmU2RjI3JCQiMzladktiUmw1PkZjcCQiM2BHPUQnel9KXyhGMjckJCIzdC5cZ1UxI3ksI0ZjcCQiMztcRCQqMzY0MjpGOTckJCIzPCRIdi5rYnM2I0ZjcCQiM1BiZEY4alxHQUY5NyQkIjNGKTQ1cHhwbUEjRmNwJCIzT3NEaCxaKlEvJEY5NyQkIjNhbnRXXVxvR0JGY3AkIjM8R0hOKVtKSSNRRjk3JCQiM2ZiaVhARUpWQ0ZjcCQiM2FMRTIoKnpqPVpGOTckJCIzUXNpMThYNWFERmNwJCIzd00/YC9cNi5jRjk3JCQiM3U1XWxfKlJIbiNGY3AkIjM3OF5uJXpdNGQnRjk3JCQiM3MyWCopeSIqNCN6I0ZjcCQiM0VZRWZAInkqZnZGOTckJCIzVVU3blRwKSo+SEZjcCQiMy1SWVc6JUgyaylGOTckJCIzKT4sT3NTIz1ZSUZjcCQiM1c1PysleWRhcypGOTckJCIzV2xVdGNYSHlKRmNwJCIzRV03IjRUQnozIkZjcDckJCIzQzx5WFohZkJKJEZjcCQiM25uLC1MIyl5MTdGY3A3JCQiMzA1PEZpJD0jUU1GY3AkIjNrVEA0KDQ4Kj44RmNwNyQkIjNFKydRbCpHZyZlJEZjcCQiM2krL2JSNjthOUZjcDckJCIzMFdzT3pyRD9QRmNwJCIzLyRbSUZMIlJ5OkZjcDckJCIzNVsiZnYpb3dtUUZjcCQiM1dsKlwlPTA8OjxGY3A3JCQiMyQ0Sz5KLUwpNFNGY3AkIjM7YCc0NEFsLSY9RmNwNyQkIjNXbW1tbW1tbVRGY3AkIiM/RistJSpMSU5FU1RZTEVHNiMiIiUtJSpUSElDS05FU1NHNiMiIiMtJSZDT0xPUkc2JiUkUkdCRyRGKyEiIkZqaWwkIiM1RltqbC1GJjYmN2pwNyQkITNXbW1tbW1tbVRGY3BGXGlsNyQkITNJKm8uRkNRJDRTRmNwJCIzP2dAWytielw9RmNwNyQkITMhZi4wPj9vXShRRmNwJCIzJD5tWl8iKW9IcyJGY3A3JCQhM3d4WktKWylwcyRGY3AkIjNhayV5UDRPWWUiRmNwNyQkITMnKm88Uz5SLyJlJEZjcCQiM2lyeXk7NCkqXDlGY3A3JCQhM2RIRlQ5ViIqUU1GY3AkIjNYNVsjPWdVMEsiRmNwNyQkITNBUnNPLGcjKjRMRmNwJCIzJXBwZSQzZGgvN0ZjcDckJCEzPyd5LycpNCY+ekpGY3AkIjM5NWtjJCpmcikzIkZjcDckJCEzLUZHcC4iR3EvJEZjcCQiMys5eEc7Y3lLKCpGOTckJCEzT0FzazxdTz1IRmNwJCIzJlJ3JkgmXC5waSlGOTckJCEzXUA0WVMjUSMqeSNGY3AkIjNZOyQ0ckJDZ2AoRjk3JCQhM1tbNyVHOzwjeUVGY3AkIjNUbW9uRSNvVmgnRjk3JCQhMylbYCFSdCEpR2NERmNwJCIzTDEpZSEqKVJzP2NGOTckJCEzSXQrKmVASHJWI0ZjcCQiMykqPUdKL3QhKXBZRjk3JCQhMyY+RyJcKno7YUsjRmNwJCIzNy1gVUlCIXl6JEY5NyQkITNPXCZweSMza0VBRmNwJCIzdHdYR0FoblZJRjk3JCQhMyJ6bSNIUiQ+RDYjRmNwJCIzP1Z4ci4iKXAkPiNGOTckJCEzellBdUg1cT0/RmNwJCIzIlx0Kj4jKj1SODpGOTckJCEzKHBJUWUoPiFIIj5GY3AkIjM5TC42SUMjKnl3RjI3JCQhM2ZSKWVuJDNHQT1GY3AkIjMrTy1lJT13OVwiRjI3JCQhM0kqUSlcdSZ5aHMiRmNwJCEzIWZGUSlwJm9EJltGMjckJCEzVm5qJlxMZXpqIkZjcCQhM2NxaTAoW0JoLyJGOTckJCEzQ2lsWGlCVFw6RmNwJCEzUW0pKnA6Xk8nZSJGOTckJCEza3hNT3ZyTHI5RmNwJCEzOVU1MEYsLlU/Rjk3JCQhM2khcCd5XSE9MlIiRmNwJCEzJUdcKnpFZzYhXCNGOTckJCEzLURPUGlGNTY4RmNwJCEzNSQ0WGBSW3khSEY5NyQkITNnV3gqPXIzYUMiRmNwJCEzRSVHJSkpSDciPkIkRjk3JCQhM1soejwlW3JceTZGY3AkITMjWyRmXzRQYFNORjk3JCQhM3JxXEI2Ozw5NkZjcCQhMykpKT1oZztbVSJRRjk3JCQhMyMpNElJJ3lIbDAiRmNwJCEzSS45SlsmW3cuJUY5NyQkITMwUFFCSnheMTVGY3AkITNBP1tQWFEtN1VGOTckJCEzYzgtMXAtWyFmKkY5JCEzMVx1MVQ1XWRWRjk3JCQhM0t2aCtPdilvRCpGOSQhMy93djA/SyxYV0Y5NyQkITNyQkxoc3RYTyEqRjkkITNfSHVRKXoxTFwlRjk3JCQhM3NrIlIqM0olNCsqRjkkITNxLmtFQi4lKSpcJUY5NyQkITMpRyNlP3U9bT8hKkY5JCEzeU5QSi5MIW9cJUY5NyQkITN4P1wiPUFDaTcqRjkkITNrI29vdCk+YCNbJUY5NyQkITNDViJRYnovXE4qRjkkITMrc3QjSHFAb1glRjk3JCQhM008LCFSXGl3LiJGY3AkITNFJkgsUTpAdVAlRjk3JCQhM210Si1ZK1pfNkZjcCQhM18oKmZkIUcvKT5WRjk3JCQhMyVSS1g6X0t0TyJGY3AkITNvISpbS0k/N15VRjk3JCQhM2EhZTExLjF4YSJGY3AkITMtInleQ2Q/TkAlRjk3JCQhM1V0X3REI3A1JD1GY3AkITNXVit0bVtGdFRGOTckJCEzcVE5cm5NQ1Q/RmNwJCEzdVJmIzRVZ0A6JUY5NyQkITMlUUgkPSkqKlEwTCNGY3AkITMjKXknZkoiXFFJVEY5NyQkITMxR1BMeU0jKT5ERmNwJCEzPlIyL2gjXCM+VEY5NyQkITNXKSlRIVJuQ0F2I0ZjcCQhM2VoN1ZWJFt6NSVGOTckJCEzNidlZSlRdTRXSUZjcCQhM01WN0xnQFsnNCVGOTckJCEzZ1F2Klw6bzdVJEZjcCQhMzkob1M8cl1bMyVGOTckJCEzL2Z0XiVIYGhtJEZjcCQhM0kjbyNHIkgncHlTRjk3JCQhM29ULTUhKXkuYlJGY3AkITMhW3NpdWUnXHNTRjk3JCQhM01fdCdHVW8zSSVGY3AkITMhSCIzRys7RG1TRjk3JCQhMy1eMmRKTUFBWkZjcCQhM2NZcHRIOCcqZlNGOTckJCEzUz1LcGwnXG5DJkZjcCQhMyNlN0pleERPMCVGOTckJCEzOm94Lk5SWTxmRmNwJCEzYV5MY1FcQ1pTRjk3JCQhM3Bcd2NuJGVeIW9GY3AkITMmR2lMeiIpPTMvJUY5NyQkITMkUjAlUjRMOE4hKUZjcCQhM2pTPiVSVFpWLiVGOTckJCEzVWFCTiIpZTtfKSpGY3AkITMqUkkpZUUyJHktJUY5NyQkITNtTWdEUidbMkciRl91JCEzcjlGKGV2bzctJUY5NyQkITMtLlhaPmZvWD1GX3UkITNCcF56LDptOVNGOTckJCEzd21GIypbaVBjTEZfdSQhMzZyY05rKjMhM1NGOTckJCEzJzQ6V1NSO2wuI0ZfdiQhM2Q9VWJWNkosU0Y5NyQkIjN3OFtESThpIylbRl91JCEzXTczUlIhb1gqUkY5NyQkIjM9Zit2bCFbYzojRl91JCEzI0hYbD1sengpUkY5NyQkIjN3NGhRZ1o2dDhGX3UkITM3UCJ5NClmJTQpUkY5NyQkIjMiSGp0KD5tJz4rIkZfdSQhM2VwKUduLW5TKFJGOTckJCIzVWxCXmwjcE4meUZjcCQhM0lZdzYqeVVyJ1JGOTckJCIzaFxzLiU9NlVWJ0ZjcCQhM01xVzlvSzxnUkY5NyQkIjNeVTYvazBSS2FGY3AkITM1UiQ0UVllSiZSRjk3JCQiM3c2Q0tEJT13byVGY3AkITNBYkE2dyQpNFlSRjk3JCQiMy5NeWtWT0o3VEZjcCQhM2Y6SzAwSSoqUVJGOTckJCIzOV1wJjM6Q1lsJEZjcCQhMz9DQWpdQiU9JFJGOTckJCIzXUBJJG9TJCo9RyRGY3AkITMyeCNcR1RZWSNSRjk3JCQiM0g8OlwseW82RkZjcCQhMz9Bdj4obz0sIlJGOTckJCIzZURMa2lgQidII0ZjcCQhM2FdejRHKTRhKlFGOTckJCIzPzJkWk8kei0pPkZjcCQhMytqMGJOKT4wKVFGOTckJCIzJzM4WDQ+cT90IkZjcCQhMzdmYGI0KFthJ1FGOTckJCIzKSl6JnBDdzMoeThGY3AkITNhVXpMWnchZiRRRjk3JCQiM0AoeS1wY1QlSDZGY3AkITN3LyV6ITRYcDBRRjk3JCQiMyFHYXk1RiNHWSUqRjkkITNlWih6Wkg0W3gkRjk3JCQiMyp6MypceiE9Wy0pRjkkITMqNCgqUVcrX0t1JEY5NyQkIjMjKmU7d1R4JzMqZkY5JCEzT2RTaiY+QCJ5T0Y5NyQkIjMiNCZmUDlfPDtZRjkkITN6a1ltIzMtLmgkRjk3JCQiMydSVTU/T1ZpKEdGOSQhM11NKyE0Tz9LWSRGOTckJCIzdyQ9YXAhM1N3PUY5JCEzYW5UYjJIKltJJEY5NyQkIjNBVDRnIVtfZ0QiRjkkITN2KikpUilbK3hPSkY5NyQkIjNVL21tIVE4bVopRjIkITM3ajs4R3BlZEhGOTckJCIzRWZzOiJ5Qm4qZUYyJCEzZWV6KmY6Jj0keSNGOTckJCIzUyxveTE7XW5TRjIkITNfJ2V5IUhXVypmI0Y5NyQkIjMsdF44SjhmPztGMiQhMy9NJEh5KTMuVkBGOTckJCIzSCcpSE4jPSx4NSdGNiQhM19PPU9SeEIkcCJGOTckJCIzPVdOeCFldGxiIkY2JCEzSVUuXVNiVXE2Rjk3JCQiM2FDNjUoZSoqeiI+Ri8kITM5IXlNIWYnPUJHJ0YyRiktRl9pbDYjIiIiRmJpbC1GZ2lsNiZGaWlsRlxqbEZqaWxGamlsLUYmNiU3UzckJCEjSUYrJCEjWEYrNyQkITMhKioqKioqXDI8I3BHRmNwJCEzbSoqKipcN2MjUUklRmNwNyQkITMrKytEXk5VYkZGY3AkITMsK10ob0tOSjglRmNwNyQkITMlKioqKipcSzNYRkVGY3AkITMhKioqKlwoW2k8VFJGY3A3JCQhMyUqKioqKlxGKUgnKVwjRmNwJCEzMysrRFRaJXp1JEZjcDckJCEzJSkqKipcaTNAL1AjRmNwJCEzNStdUEg7amJORmNwNyQkITMhKioqKlw3PGI6RCNGY3AkITMlKSoqXChvdkt0UCRGY3A3JCQhMyUpKioqXDdTdyVHQEZjcCQhM3cqKlwoPWc5Rj4kRmNwNyQkITMiKSoqKlw3Oyk9LD9GY3AkITNyKipcKD1DI3ksSUZjcDckJCEzKysrRE8iM1YoPUZjcCQhMyoqKipcUC9BWTZHRmNwNyQkITM6KysrTmt6VjxGY3AkITNBKytdX1lwOkVGY3A3JCQhMyUqKioqKlxkOyUpRztGY3AkITMiKioqKlxpW2lLVyNGY3A3JCQhMyUqKioqKipcISlIJSpcIkZjcCQhMysrK10yWjlcQUZjcDckJCEzPSsrK3ZsW3A4RmNwJCEzMysrXWkpSFUwI0ZjcDckJCEzJioqKioqKlw+aVVDIkZjcCQhM3cqKioqXCNIJFJtPUZjcDckJCEzKSoqKipcN1lZMDgiRmNwJCEzISkqKlwoPXA+ZXAiRmNwNyQkITNzKioqKioqXFhGYCoqRjkkITMnKioqKipcIz0iKkhcIkZjcDckJCEzXiwrKytBejIpKUY5JCEzQisrK0kpbzZLIkZjcDckJCEzPS0rXTdSS3Z1RjkkITNMK10ob2UpSEA2RmNwNyQkITNzLCsrK1AnZUgnRjkkITNmLSsrXWJ6ViUqRjk3JCQhM2YqKioqXDcqMz0rJkY5JCEzUioqKlwob0xyLXZGOTckJCEzUSoqKipcUEZjcFBGOSQhMzEqKipcaTVXVmwmRjk3JCQhMyUqKioqKipcN1ZRWyNGOSQhMyopKioqKlwob2tkcyRGOTckJCEzPSgqKipcaTY6LjhGOSQhM3kmKipcUHVFWiY+Rjk3JCQhMyN5KCkqKioqXFA6J0hGNiQhM3M7KSoqKlxpSVVXRjY3JCQiM18qKioqXChRSUtIIkY5JCIzRyoqKlw3ZVgpUj5GOTckJCIzTigqKipcNzp4V0NGOSQiMy0nKipcKG9zOm5PRjk3JCQiMy8uKyt2dVkpbyRGOSQiM2QvK103N3FLYkY5NyQkIjN5KSoqKioqKjRGTChcRjkkIjM7KSoqKioqXDEqKmZ1Rjk3JCQiM3gsKyt2OkpJaUY5JCIzay0rXWl0WVgkKkY5NyQkIjNzKioqKlwobzNsVyhGOSQiMycqKipcNy5qKHA2IkZjcDckJCIzVycqKioqXEEpKW96KUY5JCIzWioqKlxQQkwmPjhGY3A3JCQiM2UqKioqKipIay0sNUZjcCQiM1AqKioqKlxrUjpdIkZjcDckJCIzJCoqKioqKlxBIWVJNkZjcCQiMyEqKioqKlxQLihlcCJGY3A3JCQiM3UqKipcKD1fKHpDIkZjcCQiM2cqKlw3R0cnPig9RmNwNyQkIjNxKysrYio9alAiRmNwJCIzMSwrXUsleVcxI0ZjcDckJCIzJSoqKipcKDMvMyhcIkZjcCQiMyMqKipcNzgxaVhBRmNwNyQkIjNFKyt2QjRKQjtGY3AkIjNSK11pJlFtXFYjRmNwNyQkIjNlKioqKipcS0NudSJGY3AkIjNOKioqKlwoWyczP0VGY3A3JCQiMzMrK3Y9biNmKD1GY3AkIjM3K103eSsqUSJHRmNwNyQkIjM/KysrISlSTys/RmNwJCIzSSsrK3FmYStJRmNwNyQkIjNUKytdXyE+dzcjRmNwJCIzaSsrdnkmRzk+JEZjcDckJCIzTysrdilRP1FEI0ZjcCQiM18rXTckZUkyUSRGY3A3JCQiM2srKys1anlwQkZjcCQiMyc0KytdWXpZYiRGY3A3JCQiM2ArK11VanAtREZjcCQiMyEzK11QXldTdiRGY3A3JCQiM2wqKioqKipmRWRARUZjcCQiM1oqKioqKioqKSplQiRSRmNwNyQkIjNdKyt2Myc+JFtGRmNwJCIzditdNzglekM3JUZjcDckJCIzSysrRDZFanBHRmNwJCIzWStdKG8iKltXSSVGY3A3JCQiI0lGKyQiI1hGKy1GX2lsNiMiIiQtRmdpbDYmRmlpbEZqaWxGXGpsRmppbC1GJjYlN1M3JEZpZ25GW2dvNyRGXmhuJCIzbSoqKipcN2MjUUklRmNwNyRGY2huJCIzLCtdKG9LTko4JUZjcDckRmhobiQiMyEqKioqXChbaTxUUkZjcDckRl1pbiQiMzMrK0RUWiV6dSRGY3A3JEZiaW4kIjM1K11QSDtqYk5GY3A3JEZnaW4kIjMlKSoqXChvdkt0UCRGY3A3JEZcam4kIjN3KipcKD1nOUY+JEZjcDckRmFqbiQiM3IqKlwoPUMjeSxJRmNwNyRGZmpuJCIzKioqKlxQL0FZNkdGY3A3JEZbW28kIjNBKytdX1lwOkVGY3A3JEZgW28kIjMiKioqKlxpW2lLVyNGY3A3JEZlW28kIjMrKytdMlo5XEFGY3A3JEZqW28kIjMzKytdaSlIVTAjRmNwNyRGX1xvJCIzdyoqKipcI0gkUm09RmNwNyRGZFxvJCIzISkqKlwoPXA+ZXAiRmNwNyRGaVxvJCIzJyoqKioqXCM9IipIXCJGY3A3JEZeXW8kIjNCKysrSSlvNksiRmNwNyRGY11vJCIzTCtdKG9lKUhANkZjcDckRmhdbyQiM2YtKytdYnpWJSpGOTckRl1ebyQiM1IqKipcKG9Mci12Rjk3JEZiXm8kIjMxKioqXGk1V1ZsJkY5NyRGZ15vJCIzKikqKioqXChva2RzJEY5NyRGXF9vJCIzeSYqKlxQdUVaJj5GOTckRmFfbyQiM3M7KSoqKlxpSVVXRjY3JEZmX28kITNHKioqXDdlWClSPkY5NyRGW2BvJCEzLScqKlwob3M6bk9GOTckRmBgbyQhM2QvK103N3FLYkY5NyRGZWBvJCEzOykqKioqKlwxKipmdUY5NyRGamBvJCEzay0rXWl0WVgkKkY5NyRGX2FvJCEzJyoqKlw3LmoocDYiRmNwNyRGZGFvJCEzWioqKlxQQkwmPjhGY3A3JEZpYW8kITNQKioqKipca1I6XSJGY3A3JEZeYm8kITMhKioqKipcUC4oZXAiRmNwNyRGY2JvJCEzZyoqXDdHRyc+KD1GY3A3JEZoYm8kITMxLCtdSyV5VzEjRmNwNyRGXWNvJCEzIyoqKlw3ODFpWEFGY3A3JEZiY28kITNSK11pJlFtXFYjRmNwNyRGZ2NvJCEzTioqKipcKFsnMz9FRmNwNyRGXGRvJCEzNytdN3krKlEiR0ZjcDckRmFkbyQhM0krKytxZmErSUZjcDckRmZkbyQhM2krK3Z5Jkc5PiRGY3A3JEZbZW8kITNfK103JGVJMlEkRmNwNyRGYGVvJCEzJzQrK11ZelliJEZjcDckRmVlbyQhMyEzK11QXldTdiRGY3A3JEZqZW8kITNaKioqKioqKikqZUIkUkZjcDckRl9mbyQhM3YrXTc4JXpDNyVGY3A3JEZkZm8kITNZK10obyIqW1dJJUZjcDckRmlmb0ZbaG5GYGduRmBnby1GJjYmN1M3JEZpZ24kISIlRis3JEZeaG5GaGBwNyRGY2huRmhgcDckRmhobkZoYHA3JEZdaW5GaGBwNyRGYmluRmhgcDckRmdpbkZoYHA3JEZcam5GaGBwNyRGYWpuRmhgcDckRmZqbkZoYHA3JEZbW29GaGBwNyRGYFtvRmhgcDckRmVbb0ZoYHA3JEZqW29GaGBwNyRGX1xvRmhgcDckRmRcb0ZoYHA3JEZpXG9GaGBwNyRGXl1vRmhgcDckRmNdb0ZoYHA3JEZoXW9GaGBwNyRGXV5vRmhgcDckRmJeb0ZoYHA3JEZnXm9GaGBwNyRGXF9vRmhgcDckRmFfb0ZoYHA3JEZmX29GaGBwNyRGW2BvRmhgcDckRmBgb0ZoYHA3JEZlYG9GaGBwNyRGamBvRmhgcDckRl9hb0ZoYHA3JEZkYW9GaGBwNyRGaWFvRmhgcDckRl5ib0ZoYHA3JEZjYm9GaGBwNyRGaGJvRmhgcDckRl1jb0ZoYHA3JEZiY29GaGBwNyRGZ2NvRmhgcDckRlxkb0ZoYHA3JEZhZG9GaGBwNyRGZmRvRmhgcDckRltlb0ZoYHA3JEZgZW9GaGBwNyRGZWVvRmhgcDckRmplb0ZoYHA3JEZfZm9GaGBwNyRGZGZvRmhgcDckRmlmb0ZoYHBGYGduLUZjaWxGXmdvLUZnaWw2JkZpaWxGXGpsRmppbEZcamwtRiY2JTdTNyRGaWduJCEjNkYrNyRGXmhuJCEzRUxMJGUlRz95NUZjcDckRmNobiQhM2NtO2Flc0JmNUZjcDckRmhobiQhM0xMTDNzJTN6LiJGY3A3JEZdaW4kITNFTExlLyRRaywiRmNwNyRGYmluJCEzIWVtOy8iPXFdKipGOTckRmdpbiQhMyc+TCQzXz5mXygqRjk3JEZcam4kITNhKSoqXChvMVlaJipGOTckRmFqbiQhMyQ9TCQzLU9KTiQqRjk3JEZmam4kITMhKSkqKlxQKm8lUTcqRjk3JEZbW28kITNLbW1tIlJGaiEqKUY5NyRGYFtvJCEza0tMJGU0T1pyKUY5NyRGZVtvJCEzPysrK3YnXCEqXClGOTckRmpbbyQhM0crKytEd1ojRylGOTckRl9cbyQhMyMqKioqKipcS3FQMilGOTckRmRcbyQhM3FLTDMtVEMlKXlGOTckRmlcbyQhMy9tbW0iNHopZXdGOTckRl5dbyQhM01tbW1tYCd6WShGOTckRmNdbyQhM08rK3Y9dCllQyhGOTckRmhdbyQhM09tbW07MUpccUY5NyRGXV5vJCEzQisrdj1bakxvRjk3JEZiXm8kITNnKioqXGlYZyNHbUY5NyRGZ15vJCEzbW1tO2FRKFJUJ0Y5NyRGXF9vJCEzXG1tVGc9PjxpRjk3JEZhX28kITNWTEwkZSplJFwrJ0Y5NyRGZl9vJCEzc0xMMy07WSV5JkY5NyRGW2BvJCEzcysrRCIzUURmJkY5NyRGYGBvJCEzX0tMJDNVYl9RJkY5NyRGZWBvJCEzISoqKioqKipcQDZyXkY5NyRGamBvJCEzcSoqKipcUFpoaFxGOTckRl9hbyQhM00rK3Y9XyIqZVpGOTckRmRhbyQhMyozKytEJz4mUWAlRjk3JEZpYW8kITNQbm1tO0VpSlZGOTckRl5ibyQhM1UrKytEJypwOlRGOTckRmNibyQhM3pMTDMtOC8/UkY5NyRGaGJvJCEzJSkpKioqKlwyTmhxJEY5NyRGXWNvJCEzMG5tVCYpZidbXSRGOTckRmJjbyQhM3MqKipcUHoiWyVIJEY5NyRGZ2NvJCEzYW5tbSJ6I3opMyRGOTckRlxkbyQhMy0rK3ZvYVh0R0Y5NyRGYWRvJCEzSUxMTEwrMW1FRjk3JEZmZG8kITMnSExMZUNvUlgjRjk3JEZbZW8kITNSbW1UJm9LT0MjRjk3JEZgZW8kITMlKikqKioqKlxoTl0/Rjk3JEZlZW8kITM0bW07SCVSKUc9Rjk3JEZqZW8kITMkUkxMTEI3MmoiRjk3JEZfZm8kITN3KioqXCg9dFk+OUY5NyRGZGZvJCEzeSoqKlw3KSp5c0AiRjk3JEZpZm8kRltqbEYrRl1nby1GZ2lsNiZGaWlsRmppbEZqaWxGamlsLUYmNiU3UzckRmlnbkZhXXE3JEZeaG4kITNWbm1tVDooekAiRjk3JEZjaG4kITNqTExlOXVpMjlGOTckRmhobiQhM3ltbTt6XyI0aSJGOTckRl1pbiQhM1BubTthcGhOPUY5NyRGYmluJCEzd0xMZSo9KUhcP0Y5NyRGZ2luJCEzO25tInovM3VDI0Y5NyRGXGpuJCEzYysrREokUkRYI0Y5NyRGYWpuJCEzR25tInpSJ29rRUY5NyRGZmpuJCEzSSsrRDFKOndHRjk3JEZbW28kITNDTExMM0VuJDQkRjk3JEZgW28kITMjcG1tVCFSRSZHJEY5NyRGZVtvJCEzRCsrK0QuJjRdJEY5NyRGaltvJCEzcioqKioqXFBBdnIkRjk3JEZfXG8kITMzKysrdidIaSNSRjk3JEZkXG8kITNJbm0ieipldjpURjk3JEZpXG8kITMoUkxMJDM0N1RWRjk3JEZeXW8kITNuTExMTFkuS1hGOTckRmNdbyQhM2sqKipcN283VHYlRjk3JEZoXW8kITNrTExMJFEqb11cRjk3JEZdXm8kITN3KioqXDc9bGo7JkY5NyRGYl5vJCEzUysrdlYmUjxQJkY5NyRGZ15vJCEzTUxMJGU5RWdlJkY5NyRGXF9vJCEzXUxMZVIiM0d5JkY5NyRGYV9vJCEzZW1tOy9UMSYqZkY5NyRGZl9vJCEzSG1tInpSUWJAJ0Y5NyRGW2BvJCEzRSoqKlwoPT5ZMmtGOTckRmBgbyQhM1pubTt6WHU5bUY5NyRGZWBvJCEzNCsrK115KSlHb0Y5NyRGamBvJCEzSCsrXWlfUVFxRjk3JEZfYW8kITNtKioqXDd5JTNUc0Y5NyRGZGFvJCEzNyoqKipcUCFbaFkoRjk3JEZpYW8kITNpS0xMJFF4JG93Rjk3JEZeYm8kITNlKioqKipcUCtWKXlGOTckRmNibyQhMz9tbSJ6cGUqeiEpRjk3JEZoYm8kITM7LCsrRFwnUUgpRjk3JEZdY28kITMxS0xlOVM4JlwpRjk3JEZiY28kITMlKSoqKlxpPz1icSlGOTckRmdjbyQhMy1LTEwzcz82KilGOTckRlxkbyQhM2EqKipcN2BXbDcqRjk3JEZhZG8kITMiZW1tbScqUlJMKkY5NyRGZmRvJCEzO21tO2E8LlkmKkY5NyRGW2VvJCEzdUtMZTl0T2MoKkY5NyRGYGVvJCEzMSwrK11Ra1wqKkY5NyRGZWVvJCEzSUxMM2RnNjw1RmNwNyRGamVvJCEzaG1tbXcoR3AuIkZjcDckRl9mbyQhMy0rXTdvSzBlNUZjcDckRmRmbyQhMyUqKipcKD01cyN5NUZjcDckRmlmb0ZhZHBGYGduRmJdcS0lK0FYRVNMQUJFTFNHNidRITYiRmlmcS0lJUZPTlRHNiQlKkhFTFZFVElDQUdGXWpsJStIT1JJWk9OVEFMR0ZfZ3EtJSVWSUVXRzYkOyQhJCskRltqbEZpZm87JCEjXUZbamwkIiNdRltqbA==En pointill\351s le support et les droites caract\351ristiques associ\351s aux param\350tres positifsEn trait plein le support et les droites caract\351ristiques associ\351es aux param\350tres n\351gatifsEn rouge le support des param\350tres n\351gatifsEn bleu le support des param\350tres positifsEn vert les directions asymtotiques pour t->infiniEn noir les tangentes en M(3) et M(-3)En magenta l'asymptote horizontale pour t->2 et t->-2