restart:trajectoire elliptiquer:=theta->p/(1-e*cos(theta-theta0));NiM+SSJyRzYiZio2I0kmdGhldGFHRiVGJTYkSSlvcGVyYXRvckdGJUkmYXJyb3dHRiVGJSomSSJwR0YlIiIiLCZGLkYuKiZJImVHRiVGLi1JJGNvc0dGJTYjLCY5JEYuSSd0aGV0YTBHRiUhIiJGLkY4RjhGJUYlRiU=Exercice 1Calcul de e^2 et cos^2(theta0) en fonction de p,R et du demi grand axe ara:=r(theta0); apog\351eNiM+SSNyYUc2IiomSSJwR0YlIiIiLCZGKEYoSSJlR0YlISIiRis=rp:=r(theta0+Pi); p\351rig\351eNiM+SSNycEc2IiomSSJwR0YlIiIiLCZGKEYoSSJlR0YlRighIiI=eq_a:=2*a=rp+ra; Equation du demi-grand axeNiM+SSVlcV9hRzYiLywkSSJhR0YlIiIjLCYqJkkicEdGJSIiIiwmRi1GLUkiZUdGJUYtISIiRi0qJkYsRi0sJkYtRi1GL0YwRjBGLQ==eq_R:=R=r(0); Condition initiale du tirNiM+SSVlcV9SRzYiL0kiUkdGJSomSSJwR0YlIiIiLCZGKkYqKiZJImVHRiVGKi1JJGNvc0c2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiNJJ3RoZXRhMEdGJUYqISIiRjU=On resout le systeme compos\351e des deux \351galit\351s pr\351cendentes pour les inconnues e et cos(theta0)sol:=solve({eq_a,eq_R},{e,cos(theta0)});NiM+SSRzb2xHNiI8JC9JImVHRiUtSSdSb290T2ZHNiRJKnByb3RlY3RlZEdGLEkoX3N5c2xpYkdGJTYkLChJImFHRiUhIiIqJkYwIiIiSSNfWkdGKyIiI0YzSSJwR0YlRjMvSSZsYWJlbEdGJUkkX0wxR0YlLy1JJGNvc0dGKzYjSSd0aGV0YTBHRiUsJCooLCZJIlJHRiVGMUY2RjNGM0ZCRjFGKUYxRjE=sol:=allvalues(sol);on explicite l'expression de e \340 l'aide de la fonction allvaluesNiM+SSRzb2xHNiI2JDwkL0kiZUdGJSokLCQqJiwmSSJhR0YlISIiSSJwR0YlIiIiRjFGLkYvRi8jRjEiIiMvLUkkY29zRzYkSSpwcm90ZWN0ZWRHRjhJKF9zeXNsaWJHRiU2I0kndGhldGEwR0YlLCQqKCwmSSJSR0YlRi9GMEYxRjFGP0YvRisjRi9GM0YvPCQvRiksJEYqRi8vRjVGPQ==sol_part:=[op(sol[1])];on ne garde que que la solution v\351rifiant e>0NiM+SSlzb2xfcGFydEc2IjckL0kiZUdGJSokLCQqJiwmSSJhR0YlISIiSSJwR0YlIiIiRjBGLUYuRi4jRjAiIiMvLUkkY29zRzYkSSpwcm90ZWN0ZWRHRjdJKF9zeXNsaWJHRiU2I0kndGhldGEwR0YlLCQqKCwmSSJSR0YlRi5GL0YwRjBGPkYuRiojRi5GMkYuedeux:=subs(sol_part,e)^2;on calcule e^2 NiM+SSZlZGV1eEc2IiwkKiYsJkkiYUdGJSEiIkkicEdGJSIiIkYsRilGKkYqcostheta0deux:=subs(sol_part,cos(theta0))^2;on calcule cos(theta0)^2NiM+SS5jb3N0aGV0YTBkZXV4RzYiLCQqKiwmSSJSR0YlISIiSSJwR0YlIiIiIiIjRikhIiMsJkkiYUdGJUYqRitGLEYqRjBGLEYqExercice 2Constante de la loi des aires: conservation du moment cin\351tiqueC:=R*v0*sin(alpha);NiM+SSJDRzYiKihJIlJHRiUiIiJJI3YwR0YlRigtSSRzaW5HNiRJKnByb3RlY3RlZEdGLUkoX3N5c2xpYkdGJTYjSSZhbHBoYUdGJUYoExpression de p en fonction des conditions initialesp:=C*C/(G*M);NiM+SSJwRzYiKixJIlJHRiUiIiNJI3YwR0YlRigtSSRzaW5HNiRJKnByb3RlY3RlZEdGLUkoX3N5c2xpYkdGJTYjSSZhbHBoYUdGJUYoSSJHR0YlISIiSSJNR0YlRjI=p:=subs(G=vc*vc*R/M,p); injectons dans p l'expression de GNiM+SSJwRzYiKipJIlJHRiUiIiJJI3YwR0YlIiIjLUkkc2luRzYkSSpwcm90ZWN0ZWRHRi5JKF9zeXNsaWJHRiU2I0kmYWxwaGFHRiVGKkkjdmNHRiUhIiM=p:=subs(v0=T*vc,p); injectons dans p l'expression de v0=T*vcNiM+SSJwRzYiKihJIlJHRiUiIiJJIlRHRiUiIiMtSSRzaW5HNiRJKnByb3RlY3RlZEdGLkkoX3N5c2xpYkdGJTYjSSZhbHBoYUdGJUYqExercice 3Expression de la conservation de l'\351nergie m\351caniqueeq_E:=(1/2)*m*v0*v0-G*M*m/R=-G*M*m/(2*a);NiM+SSVlcV9FRzYiLywmKiZJIm1HRiUiIiJJI3YwR0YlIiIjI0YqRiwqKkkiR0dGJUYqSSJNR0YlRipGKUYqSSJSR0YlISIiRjIsJCoqRi9GKkYwRipGKUYqSSJhR0YlRjIjRjJGLA==a:=solve(eq_E,a); expression de aNiM+SSJhRzYiLCQqKkkiR0dGJSIiIkkiTUdGJUYpSSJSR0YlRiksJiomSSN2MEdGJSIiI0YrRilGKSomRihGKUYqRikhIiMhIiJGMg==a:=subs(G=vc*vc*R/M,a); injectons dans a l'expression de GNiM+SSJhRzYiLCQqKEkjdmNHRiUiIiNJIlJHRiVGKSwmKiZJI3YwR0YlRilGKiIiIkYuKiZGKEYpRipGLiEiIyEiIkYxa:=subs(v0=T*vc,a); injectons dans a l'expression de v0NiM+SSJhRzYiLCQqKEkjdmNHRiUiIiNJIlJHRiVGKSwmKihJIlRHRiVGKUYoRilGKiIiIkYuKiZGKEYpRipGLiEiIyEiIkYxa:=simplify(a); on simplifie l'expressionNiM+SSJhRzYiLCQqJkkiUkdGJSIiIiwmKiRJIlRHRiUiIiNGKSEiI0YpISIiRi8=Exercice 4Etude de la port\351ecostheta0deux;costheta0deux:=subs(sin(alpha)^2=1-cos(alpha)^2,costheta0deux); expression de cos(theta0)^2 en fonction de cos(alpha)^2NiMqKiwmSSJSRzYiISIiKihGJSIiIkkiVEdGJiIiIy1JJHNpbkc2JEkqcHJvdGVjdGVkR0YvSShfc3lzbGliR0YmNiNJJmFscGhhR0YmRitGKUYrRiVGJywmKiZGJUYpLCYqJEYqRitGKSEiI0YpRidGKUYoRilGJ0Y1Ric=NiM+SS5jb3N0aGV0YTBkZXV4RzYiKiosJkkiUkdGJSEiIiooRigiIiJJIlRHRiUiIiMsJkYrRisqJC1JJGNvc0c2JEkqcHJvdGVjdGVkR0YzSShfc3lzbGliR0YlNiNJJmFscGhhR0YlRi1GKUYrRitGLUYoRiksJiomRihGKywmKiRGLEYtRishIiNGK0YpRitGKkYrRilGOUYpCalcul des extremact2:=subs(cos(alpha)^2=x,costheta0deux);expression de cos(theta0)^2 en fonction de x=cos(alpha)^2NiM+SSRjdDJHNiIqKiwmSSJSR0YlISIiKihGKCIiIkkiVEdGJSIiIywmRitGK0kieEdGJUYpRitGK0YtRihGKSwmKiZGKEYrLCYqJEYsRi1GKyEiI0YrRilGK0YqRitGKUYyRik=deriv:=diff(ct2,x); d\351riv\351e par rapport \340 xNiM+SSZkZXJpdkc2IiwmKiosJkkiUkdGJSEiIiooRikiIiJJIlRHRiUiIiMsJkYsRixJInhHRiVGKkYsRixGLCwmKiZGKUYsLCYqJEYtRi5GLCEiI0YsRipGLEYrRixGKkYzRipGLUYuRjUqKkYoRi5GMUY1RjNGKkYtRi5GLA==sol:=solve(deriv=0,x); recherche des valeurs critiquesNiM+SSRzb2xHNiI2JComLCYhIiIiIiIqJEkiVEdGJSIiI0YqRipGLCEiIyomRihGKiwmRitGKkYuRipGKQ==cos_carre_alpha_optimum_1:=sol[1];cos_carre_alpha_optimum_2:=sol[2]; expression des valeurs optimales de cos(alpha)^2NiM+STpjb3NfY2FycmVfYWxwaGFfb3B0aW11bV8xRzYiKiYsJiEiIiIiIiokSSJUR0YlIiIjRilGKUYrISIjNiM+STpjb3NfY2FycmVfYWxwaGFfb3B0aW11bV8yRzYiKiYsJiEiIiIiIiokSSJUR0YlIiIjRilGKSwmRipGKSEiI0YpRig=Il s'agit bien d'un maximum de theta0 et donc un minimum de cos(theta0)^2 pour cos_carre_optimum_2 (seule valeur acceptable)delta:=factor(ct2-subs(x=cos_carre_alpha_optimum_2,ct2)); expression de la difference cos(theta0(x))^2-cos(theta0(xoptimum))^2NiM+SSZkZWx0YUc2IiwkKipJIlRHRiUiIiUsKiokRigiIiMhIiIiIiJGLiomRihGLEkieEdGJUYuRi5GMCEiI0YsLCZGK0YuRjFGLkYxLCxGLUYuKiRGKEYpRi1GK0YsKiZGKEYpRjBGLkYuRi9GMUYtRi0=assume(x>0 and x<1);assume(T>0 and T<1); is(delta>=0);cette diff\351rence est bien positiveNiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ=Exercice 5Application Num\351riqueR:=6400000;T:=0.99;'cos_carre_alpha_optimum_2'=cos_carre_alpha_optimum_2;NiM+SSJSRzYiIigrK1MnNiM+SSJURzYiJCIjKiohIiM=NiMvSTpjb3NfY2FycmVfYWxwaGFfb3B0aW11bV8yRzYiJCIkJz4hIiU=Digits:=3:alpha:=arccos(sqrt(cos_carre_alpha_optimum_2));theta0:=arccos(sqrt(costheta0deux));NiM+SSZhbHBoYUc2IiQiJFYiISIjNiM+SSd0aGV0YTBHNiIkIiRHIiEiIw=='p'=p;e:=sqrt(edeux);'r(theta)'=r(theta);NiMvSSJwRzYiJCIkOSciIiU=NiM+SSJlRzYiJCIkVyIhIiQ=NiMvLUkickc2IjYjSSZ0aGV0YUdGJiwkKiQsJiIiIkYsLUkkY29zRzYkSSpwcm90ZWN0ZWRHRjBJKF9zeXNsaWJHRiY2IywmRihGLCQhJEciISIjRiwkISRXIiEiJCEiIiQiJDknIiIlwith(plots):Warning, the name changecoords has been redefinedterre:=plot([R,theta,theta=0..2*Pi],coords=polar,scaling=constrained,color=blue,thickness=3):traj:=plot([r(theta),theta,theta=0..2*theta0],coords=polar,scaling=constrained,color=red,thickness=2):display(terre,traj);LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JTdTNyQkIigrK1MnIiIhJEYsRiw3JCQiM3gjPUk1ZEssTSchIzYkIjNFeG0+JVJ5THQpISM3NyQkIjNLXidbViFRVyI+J0YxJCIzSEolZiFSNV0/O0YxNyQkIjMjKT0vI3BpdyY+ZkYxJCIzJjQkMyV5KCk+R1YjRjE3JCQiMzEleSYqMzA+KVFiRjEkIjM3PjslKVtfWjFLRjE3JCQiM1M0JCo+UzguZ11GMSQiMzhMdEU5UW89UkYxNyQkIjNHP3pFREJrTVhGMSQiM2MpPVkqKiplSTtYRjE3JCQiM2ZBNChHIlIobyJSRjEkIjNJRWY1IVtLOTEmRjE3JCQiM3RCXyJwPkkpNEtGMSQiM1M4SU0jW3ZvYCZGMTckJCIzQVxKOHdOVVtDRjEkIjNkUTFVdShSSiJmRjE3JCQiMzpGZl1ubVA/O0YxJCIzN0c0MmJqWiI+J0YxNyQkIjMvLWgzMXQuYicpRjQkIjMiW1YsJXBuP1RqRjE3JCQiMzNWZScpUV8lcEYiISM5JCIzaUAtaHMpKioqKlInRjE3JCQhMyFlKHAyPzYrbCcpRjQkIjMoenliWnBxNU0nRjE3JCQhMzlNbz8mMy55byJGMSQiM1FuKillL25WdGhGMTckJCEzVlk1QlBpISozQ0YxJCIzUigqMyVmRFskSGZGMTckJCEzRlRkTDYhKT5AS0YxJCIzPiE9L3h0cC1gJkYxNyQkITNHLj4nKVE+YGZRRjEkIjM/L1JzbUVIMF5GMTckJCEzLyV6a2VraDxgJUYxJCIzWjRPTUprPj5YRjE3JCQhMzkwQUV1SnZgXUYxJCIzU3RBa2VyeEVSRjE3JCQhM2M6PzFyS3FQYkYxJCIzcDFMKXkmPVMzS0YxNyQkITMoUSV6IypwZ08vZkYxJCIzaXZuPCpHMSZwQ0YxNyQkITMxNl0iZiwzQj0nRjEkIjNTIXpRKm9HLGI7RjE3JCQhMyFvRlMyVGwiUmpGMSQiM2MhUiZILWNJLikpRjQ3JCQhM015dG1TJkgqKlInRjEkIjNka0gtSUQ3LkkhIzg3JCQhM3UwazAjNEZHTSdGMSQhM0MuKVEuciJbTiYpRjQ3JCQhMyVHJ2YsNVU9JT4nRjEkITNcJUdgOFMlKio0O0YxNyQkITMnW0RjRlAhektmRjEkITNoWGZ2Jkg7L1MjRjE3JCQhM19xYk1pQFFkYkYxJCEzZyYqKWVCTyQ+dUpGMTckJCEzPU4zXmp2JUg0JkYxJCEzY3pWa3N3IWUoUUYxNyQkITNvVzBrRCMqcGZYRjEkITNPYXVgKipvKyJcJUYxNyQkITMjbyg0bGBVZSIpUUYxJCEzO1MkW0lLWSYpMyZGMTckJCEzJT40IiopUU4iZT8kRjEkITMzSGtMbz8/UmJGMTckJCEzZiEqPlU2OmRGQ0YxJCEzQnpaM3YzdEBmRjE3JCQhMy95VUJaXlokbyJGMSQhM2FNdV1BJD1ZPCdGMTckJCEzXHElSDUtX01UKUY0JCEzWVFedyZHZFdNJ0YxNyQkITNHYGcuKDNuWVskRmNzJCEzaWxRJkc4MCoqUidGMTckJCIzcTFrTVJ2aSYzKUY0JCEzYXVQJltaPShbakYxNyQkIjMiUSdRJlskKUcnPjtGMSQhM3EhUl1GLXM7PidGMTckJCIzWi9zUFBLZ1JDRjEkITMyPWJabFV5O2ZGMTckJCIzeScqbyVRJzRSKD0kRjEkITM1TyhIa0pCKVxiRjE3JCQiM3l3aSMzPnhoKlFGMSQhM19ASF1SOlF4XUYxNyQkIjM+NDYpWyRHJzRgJUYxJCEzS3NJeUB0Kio+WEYxNyQkIjMqbyo0QSsiM1wvJkYxJCEzIXkpKjNIT00iUVJGMTckJCIzXjAmZSlSKlxBYSZGMSQhMyYqKUdRW1hUMD8kRjE3JCQiM0VcJEcscixtKmVGMSQhMyVRRlMxISkpKXpbI0YxNyQkIjM7W0dublIpUTwnRjEkITNRJj5uKSlHbWhvIkYxNyQkIjNMWE5kJGUxeEwnRjEkITNVaEcxS0dzMiopRjQ3JCQiM2EsY0NLdicqKlInRjEkITNuOCQzdzkkZlE/RmNzLSUmQ09MT1JHNiYlJFJHQkckRiwhIiJGYFtsJCIjNUZhW2wtJSpUSElDS05FU1NHNiMiIiQtRiY2JTdTNyQkIjM3N3pNIz4+V1MnRjFGLTckJCIzJzRvLV4nenVYa0YxJCIzUFpuUSs3XitPRjQ3JCQiM28leSNRSG8nXFknRjEkIjNlODhSJlFkNHgnRjQ3JCQiMyk+c3Y9aXd1WSdGMSQiMzFnal5oKnpuLiJGMTckJCIzT2RJTHZhNlxrRjEkIjMmKmYtKD1lPDVTIkYxNyQkIjMya0o/TidHJzRrRjEkIjM1YVsiKkgrU2s8RjE3JCQiM2VnI0chPTkkUU4nRjEkIjNpI1tzU1U5NDUjRjE3JCQiM3k7Jz1gYCZSd2lGMSQiM10yeDpPM3ZaQ0YxNyQkIjNJcSNIMFJRXjwnRjEkIjNLQU8pb1YnUi5HRjE3JCQiMy9AemVdQHVfZ0YxJCIzU3d3Z2dYUmBKRjE3JCQiM3kxZiJHOGNYIWZGMSQiM3VqK0QnZnpyXSRGMTckJCIzJSlbXStXa1liZEYxJCIzMjgxMkhPSDdRRjE3JCQiMyNwPklEXC1yYyZGMSQiM3FvIXojR3QwWlRGMTckJCIzVVA7a3EnPWxOJkYxJCIzXVY8Rk48UHNXRjE3JCQiM2x0ZGcncCV5TF5GMSQiM20mcCdcL1U4dVpGMTckJCIzOyY+cTtTQl8iXEYxJCIzd3RAJSlmJCkqcC4mRjE3JCQiM2kzSiU0O1dmaiVGMSQiM2Y6KipSKT0qR01gRjE3JCQiMy1NRHdrJVJPUSVGMSQiM2NrIzM7VSIqPmQmRjE3JCQiMyFcIm9vb1cwdFNGMSQiM2hYT2I6WyQzJGVGMTckJCIzIVtjYi8nKip5JHkkRjEkIjNERU41Y2MtVmdGMTckJCIzKXpcMSllazlfTUYxJCIzKVxsPyx5NWtEJ0YxNyQkIjMjM0RnZkw2UDckRjEkIjM8IjNXWidldFJrRjE3JCQiM1ksJz4tLDkkcEZGMSQiM0sleSdbYmJUNG1GMTckJCIzIUdYJDN4eGtNQ0YxJCIzIUh2KG86dTNYbkYxNyQkIjNFa2gpMygpZl8xI0YxJCIzPSIqZWMqPlcicG9GMTckJCIzTSIpb2xpVi91O0YxJCIzS28uZVhlI0gocEYxNyQkIjNpJVs3V3khcEc4RjEkIjNVd15iJzMkNFVxRjE3JCQiMyU+MzEkXCdRP18qRjQkIjM7em15SCgqUiU0KEYxNyQkIjMkPXpHRzUoKjRoJkY0JCIzWXErOyUqPShRNyhGMTckJCIzXXlBb0heTSF5IkY0JCIzKlFmSm9MUyZHckYxNyQkITNIL0JPInkpbzk+RjQkIjMncGo1KjQ+VjVyRjE3JCQhM0l1IykzLWlZJylmRjQkIjMjZkd3JilRXFgxKEYxNyQkITN6I1IiZURFIT5nKkY0JCIzJD1LRHNDdDArKEYxNyQkITNsKCpbL0s2NVM4RjEkIjMhb18zOjJQITRwRjE3JCQhM0dwbzU3L2d4O0YxJCIzbCMqMyRbQlBmIW9GMTckJCEzUDBCR3U4JnkuI0YxJCIzXyIpKW8vb0E/bidGMTckJCEzR1ciPm8hKipHbkJGMSQiM2Nbenh6U2NFbEYxNyQkITNYK15gT0hkK0ZGMSQiMz1pQzk8IltfTidGMTckJCEzQUZjMWZCUjlJRjEkIjMlekooZVxzbHBoRjE3JCQhMyo+VCgqZTo/IkhMRjEkIjNfSVtUa3dGZGZGMTckJCEzKyN5UUgqMyZ6aCRGMSQiMzFOT3k2b01PZEYxNyQkITMpUW0qPTIkb3oqUUYxJCIzS0IiKmVoOydcXCZGMTckJCEzX2Q4d2FDZmZURjEkIjMmemYwdUNVOEMmRjE3JCQhM1t0IilIP1tMJlElRjEkIjNPW0FTISlRJW8qXEYxNyQkITM4OyYpKVw6TmlpJUYxJCIzPCxWcERMUy9aRjE3JCQhM2JIWG8rWDtEW0YxJCIzXERmOiZmOEhWJUYxNyQkITMyZ11DOlRzPl1GMSQiM28hb0Iqb3dLTVRGMTckJCEzP0tdR3cnWygpPSZGMSQiM0lfQ3gjW1czJVFGMTckJCEzeTQ0PCwzWV5gRjEkIjNqX1haK0RJPU5GMS1GXVtsNiZGX1tsRmJbbEZgW2xGYFtsLUZlW2w2IyIiIy0lKFNDQUxJTkdHNiMlLENPTlNUUkFJTkVERy0lJVZJRVdHNiQ7JCEwQz1SbXhzbCchIikkIjElZUVedUNbcychIio7JCExd3ZDVVNacW1GYFxtJCIxL2BBWSM0IipSKEZgXG0=fleche=(ra-R)/1000; hauteur de la fl\350cehe de la trajectoire relativement \340 la surface terrestre en km NiMvSSdmbGVjaGVHNiIkIiN4IiIi