restart;with(plots):secu:=1000:secu une valeur de s\351curit\351 pour \351viter les boucles trop longuesWarning, the name changecoords has been redefinedExercice 1Question a)Dichotomie:=proc(f,a,b,epsilon) local aa,bb,compteur,milieu; aa:=a;bb:=b; avant d'amorcer la boucle assurons-nous que nous sommes dans un cas particulier if is(f(a)*f(b)>0) then return([infinity,infinity]); si f(a) et f(b) sont de m\352me signe on renvoie une solution erronn\351e elif is(f(a)=0) then return([0,a]); si f(a)=0 alors a est solution elif is(f(b)=0) then return([0,b]); si f(b)=0 alors b est solution fi; compteur:=0; while is(abs(bb-aa)>epsilon) and is(compteur<secu) do compteur:=compteur+1;milieu:=(aa+bb)/2; if is(f(milieu)=0) then aa:=bb au cas o\371 milieu soit une solution on sort de la boucle en posant [an,b_n] de diametre nul elif is(f(milieu)*f(bb)<0) then aa:=milieu; else bb:=milieu; fi; od; [compteur,milieu]; end: Question b)Premier exemplef:=x->exp(-x/2)-1;a:=-4;b:=4;epsilon:=10^(-8);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCYtSSRleHBHRiU2IywkOSQjISIiIiIjIiIiRjNGNUYlRiVGJQ==NiM+SSJhRzYiISIlNiM+SSJiRzYiIiIlNiM+SShlcHNpbG9uRzYiIyIiIiIqKysrKyI=sol:=Dichotomie(f,a,b,epsilon);solution propos\351 par la proc\351dure DichotomieNiM+SSRzb2xHNiI3JCIjSSMhK0I9dXQ1IipjYVZvIw=='f'(sol[2])=evalf(f(sol[2])); valeur de f en ce pointNiMvLUkiZkc2IjYjIyErQj11dDUiKmNhVm8jJCIrJTNjISpRJyEiKg==Deuxi\350me exemplef:=x->x^3-4*x+1;a:=-2.5;b:=-2;epsilon:=10^(-8);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgqJDkkIiIkIiIiRi4hIiVGMEYwRiVGJUYlNiM+SSJhRzYiJCEjRCEiIg==NiM+SSJiRzYiISIjNiM+SShlcHNpbG9uRzYiIyIiIiIqKysrKyI=sol:=Dichotomie(f,a,b,epsilon);solution propos\351 par la proc\351dure DichotomieNiM+SSRzb2xHNiI3JCIjRSQhK1d2IVw2IyEiKg=='f'(sol[2])=evalf(f(sol[2])); valeur de f en ce pointNiMvLUkiZkc2IjYjJCErV3YhXDYjISIqJCEjQ0YqTroisi\350me exemplef:=x->x^3-4*x+1;a:=0;b:=0.5;epsilon:=10^(-8);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgqJDkkIiIkIiIiRi4hIiVGMEYwRiVGJUYlNiM+SSJhRzYiIiIhNiM+SSJiRzYiJCIiJiEiIg==NiM+SShlcHNpbG9uRzYiIyIiIiIqKysrKyI=sol:=Dichotomie(f,a,b,epsilon);solution propos\351 par la proc\351dure DichotomieNiM+SSRzb2xHNiI3JCIjRSQiKyoqbyxURCEjNQ=='f'(sol[2])=evalf(f(sol[2])); valeur de f en ce pointNiMvLUkiZkc2IjYjJCIrKipvLFREISM1JCEiJyEiKg==Quatri\350me exemplef:=x->x^3-4*x+1;a:=1.5;b:=2;epsilon:=10^(-8);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgqJDkkIiIkIiIiRi4hIiVGMEYwRiVGJUYlNiM+SSJhRzYiJCIjOiEiIg==NiM+SSJiRzYiIiIjNiM+SShlcHNpbG9uRzYiIyIiIiIqKysrKyI=sol:=Dichotomie(f,a,b,epsilon);solution propos\351 par la proc\351dure DichotomieNiM+SSRzb2xHNiI3JCIjRSQiK19lITMnPSEiKg=='f'(sol[2])=evalf(f(sol[2])); valeur de f en ce pointNiMvLUkiZkc2IjYjJCIrX2UhMyc9ISIqJCEiKEYqIllustration Graphique
<Text-field layout="Heading 1" style="Heading 1"/>SDichotomie:=proc(f,a,b,epsilon) local aa,bb,compteur,milieu,suite_m; aa:=a;bb:=b; if is(f(a)*f(b)>0) then return([infinity,infinity]); elif is(f(a)=0) then return([0,a]); elif is(f(b)=0) then return([0,b]); fi; compteur:=1;suite_m:=NULL; milieu:=(aa+bb)/2;suite_m:=suite_m,milieu; while is(abs(bb-aa)>epsilon) and compteur<secu do if is(f(milieu)*f(bb)<0) then aa:=milieu; else bb:=milieu; fi; compteur:=compteur+1;milieu:=(aa+bb)/2;suite_m:=suite_m,milieu; od; [compteur,suite_m]; end:Graphique:=proc(f,a,b,N,s) local i,segments,courbe,points; segments:=NULL;points:=NULL; for i from 1 to N do segments:=segments,plot([[s[i],0],[s[i],f(s[i])]],color=blue,thickness=2); points:=points,plot([[s[i],0],[s[i],0]],color=black,thickness=2,style=point); od; courbe:=plot(f,a..b,color=red,thickness=3); display(courbe,points,segments); end:
f:=x->x^3-4*x+1;NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgqJDkkIiIkIiIiRi4hIiVGMEYwRiVGJUYlsol:=SDichotomie(f,a,b,epsilon):N:=sol[1]:s:=sol[2..N+1]:Graphique(f,a,b,N,s);LSUlUExPVEc2ZW4tJSdDVVJWRVNHNiU3UzckJCIzKysrKysrKys6ISM8JCEzKysrKysrK0Q7Riw3JCQiM1VMTDN4JikqM14iRiwkITMlNCZ6MjhKXCVmIkYsNyQkIjNvbSJIMlAiUT86RiwkITMzSy0lR1l0cWMiRiw3JCQiM0RMJGVSd1g1YCJGLCQhM2g8TFRbcEROOkYsNyQkIjNCTCQzeCUzeVQ6RiwkITMpPV9jek51QF0iRiw3JCQiM3NtInolNFxZXzpGLCQhMyFbPSlcTjA+bzlGLDckJCIzT0xlUi0vUGk6RiwkITNHOFFWbU10TjlGLDckJCIzISoqXGlsJ3BpczpGLCQhM1lvOipccmM2UyJGLDckJCIzU0xlKik+VkIkZSJGLCQhM0U0VyhHPmBWTyJGLDckJCIzKytESmJ3IVFmIkYsJCEzbCE9ZiM0U2dFOEYsNyQkIjN0bW1USU9vLztGLCQhMyMzM01FJSllbUciRiw3JCQiM0dMJDNfPmpVaCJGLCQhMzlpbStNP2BdN0YsNyQkIjMqKioqKlxpXlpdaSJGLCQhM1F5LD82ISl6MzdGLDckJCIzJSoqKipcKD1oKGVqIkYsJCEzPWw3cFk7dmw2Riw3JCQiMyMqKioqXFBbNmprIkYsJCEzPXU7Oidmeko3IkYsNyQkIjNHTGUqW3ooeWI7RiwkITNBcSVvSE4pZSQzIkYsNyQkIjN1bW1UWGcwbjtGLCQhM1N6QSk0KCpbYC4iRiw3JCQiM2VtbW1KPGd3O0YsJCEzXTBAdi9lIVwkKiohIz03JCQiMzErRDFNY3EobyJGLCQhMztzdkVcblhPJSpGXnE3JCQiM3NtbTtwV2AocCJGLCQhM0klZk4pPS8kWykqKUZecTckJCIzNytEMWYjPSQzPEYsJCEzNSV6bTRvLSF5JSlGXnE3JCQiMygqKlwoPXhwZT08RiwkITMheSE0MyFwL1YpekZecTckJCIzd207SDI4SUg8RiwkITNNQih6NlshZmR1Rl5xNyQkIjNzbSJ6cFNTIlI8RiwkITM9QGcjKUhHVGpwRl5xNyQkIjNNTCQzXz9gKFw8RiwkITMnKipROkJHXCE+a0ZecTckJCIzPUxlKik+cHhnPEYsJCEzNUBcdTN0M1RlRl5xNyQkIjMjKipcUGY0dC54IkYsJCEzKno2X3ZGP3ZLJkZecTckJCIzVUwkZSpHc3QheSJGLCQhM21pKUhUL2w9dyVGXnE3JCQiMycpKioqKlwjUlc5eiJGLCQhMzM3ZyFwSE1hOyVGXnE3JCQiMyUpKipcN2ojPj4hPUYsJCEzYXA7c2wiPitkJEZecTckJCIzJikqXGkhUlUwNz1GLCQhM0MnR2x2YkxFKUhGXnE3JCQiMycqKipcKD1TMkwjPUYsJCEzRCR6Xyg0YE48QkZecTckJCIzam1tO3ApPU0kPUYsJCEzRWZacEkiZnhxIkZecTckJCIzJCoqKipcKD1dQFc9RiwkITNXYiYpUnMjb1cvIkZecTckJCIzSUxlKlskeipSJj1GLCQhMykqKVxSMTM8SEslISM+NyQkIjMpKSoqKlxpQyRwaz1GLCQiMzFWKFJpMkg7XCNGZHY3JCQiM2NtIkgycWNaKD1GLCQiM2w5QDYvZVY/ISpGZHY3JCQiMzMrREo1ZkYmKT1GLCQiM1dRd0UmR3FtZiJGXnE3JCQiM2ttbVRnLmMmKj1GLCQiM1NJbDtNXyp5RyNGXnE3JCQiMykqKlxpbEFGaiE+RiwkIjNTKD49Ty5NVy0kRl5xNyQkIjNITExMKSpwcDs+RiwkIjMhUXFGO2JVanUkRl5xNyQkIjNFTCQzeGUsdCM+RiwkIjMpUSkpZjpUKVEoXCVGXnE3JCQiM2JtIkhkTz15JD5GLCQiM2k1Okc0JGVdRCZGXnE3JCQiMykpKioqKlwjPiNbWj5GLCQiM29hI3A/NTlFJ2ZGXnE3JCQiM2dtO2FHIWUmZT5GLCQiM1tlUVtqbihweSdGXnE3JCQiM0VMTEwpUWslbz5GLCQiMyh5IypRWzgybGAoRl5xNyQkIjMtK0QxTW0tej5GLCQiM29Fb2siUkolWyQpRl5xNyQkIjMtK3YkNDBPIiopPkYsJCIzMCh5Tmh4X3o4KkZecTckJCIiIyIiISQiIiJGaXotJSpUSElDS05FU1NHNiMiIiQtJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkRml6RmZbbEZnW2wtRiY2JjckNyQkIjMrKysrKysrXTxGLCRGaXpGaXpGW1xsLSUmU1RZTEVHNiMlJlBPSU5URy1GXVtsNiNGaHotRmFbbDYmRmNbbEZnW2xGZ1tsRmdbbC1GJjYmNyQ3JCQiMysrKysrKyt2PUYsRl5cbEZqXGxGX1xsRmNcbEZlXGwtRiY2JjckNyQkIjMrKysrKytdNz1GLEZeXGxGYF1sRl9cbEZjXGxGZVxsLUYmNiY3JDckJCIzKysrKysrdlY9RixGXlxsRmZdbEZfXGxGY1xsRmVcbC1GJjYmNyQ3JCQiMysrKysrXVBmPUYsRl5cbEZcXmxGX1xsRmNcbEZlXGwtRiY2JjckNyQkIjMrKysrK3Y9bj1GLEZeXGxGYl5sRl9cbEZjXGxGZVxsLUYmNiY3JDckJCIzKysrK103R2o9RixGXlxsRmhebEZfXGxGY1xsRmVcbC1GJjYmNyQ3JCQiMysrKytEIkc4Jz1GLEZeXGxGXl9sRl9cbEZjXGxGZVxsLUYmNiY3JDckJCIzJyoqKioqKj5jXi4nPUYsRl5cbEZkX2xGX1xsRmNcbEZlXGwtRiY2JjckNyQkIjMtKysrVylSMyc9RixGXlxsRmpfbEZfXGxGY1xsRmVcbC1GJjYmNyQ3JCQiMykqKioqKipIcSZmZz1GLEZeXGxGYGBsRl9cbEZjXGxGZVxsLUYmNiY3JDckJCIzLysrK3V4cmc9RixGXlxsRmZgbEZfXGxGY1xsRmVcbC1GJjYmNyQ3JCQiMyMqKioqKioqMyl5Mic9RixGXlxsRlxhbEZfXGxGY1xsRmVcbC1GJjYmNyQ3JCQiMy8rKytFJDQzJz1GLEZeXGxGYmFsRl9cbEZjXGxGZVxsLUYmNiY3JDckJCIzIyoqKioqKnoxJXpnPUYsRl5cbEZoYWxGX1xsRmNcbEZlXGwtRiY2JjckNyQkIjMzKysrKHAsMyc9RixGXlxsRl5ibEZfXGxGY1xsRmVcbC1GJjYmNyQ3JCQiMysrKys3YiEzJz1GLEZeXGxGZGJsRl9cbEZjXGxGZVxsLUYmNiY3JDckJCIzISoqKioqKio9dSEzJz1GLEZeXGxGamJsRl9cbEZjXGxGZVxsLUYmNiY3JDckJCIzNSsrK21rITMnPUYsRl5cbEZgY2xGX1xsRmNcbEZlXGwtRiY2JjckNyQkIjMlKioqKioqKikpZiEzJz1GLEZeXGxGZmNsRl9cbEZjXGxGZVxsLUYmNiY3JDckJCIzIyoqKioqKipcZCEzJz1GLEZeXGxGXGRsRl9cbEZjXGxGZVxsLUYmNiY3JDckJCIzMysrK3FlITMnPUYsRl5cbEZiZGxGX1xsRmNcbEZlXGwtRiY2JjckNyQkIjMrKysrNWUhMyc9RixGXlxsRmhkbEZfXGxGY1xsRmVcbC1GJjYmNyQ3JCQiMy8rKytTZSEzJz1GLEZeXGxGXmVsRl9cbEZjXGxGZVxsLUYmNiY3JDckJCIzJyoqKioqKlwmZSEzJz1GLEZeXGxGZGVsRl9cbEZjXGxGZVxsLUYmNiY3JDckJCIzLysrK1tlITMnPUYsRl5cbEZqZWxGX1xsRmNcbEZlXGwtRiY2JjckNyQkIjMjKioqKioqPiZlITMnPUYsRl5cbEZgZmxGX1xsRmNcbEZlXGwtRiY2JTckRltcbDckRlxcbCQhMysrKysrK0Qxa0ZecUZjXGwtRmFbbDYmRmNbbEZnW2xGZ1tsRmRbbC1GJjYlNyRGalxsNyRGW11sJCIzKysrKyt2b3oiKkZkdkZjXGxGaWZsLUYmNiU3JEZgXWw3JEZhXWwkITM1KysrcUhhY0hGXnFGY1xsRmlmbC1GJjYlNyRGZl1sNyRGZ11sJCEzMSsrKz9LSXQ1Rl5xRmNcbEZpZmwtRiY2JTckRlxebDckRl1ebCQhM0UrKysrNWRHIiohIz9GY1xsRmlmbC1GJjYlNyRGYl5sNyRGY15sJCIzRSsrKytnQSo0JUZkdkZjXGxGaWZsLUYmNiU3JEZoXmw3JEZpXmwkIjM1KysrK11sJWUiRmR2RmNcbEZpZmwtRiY2JTckRl5fbDckRl9fbCQiMy0rKysrISpvUExGY2hsRmNcbEZpZmwtRiY2JTckRmRfbDckRmVfbCQhMyUpKioqKioqKipwdytIRmNobEZjXGxGaWZsLUYmNiU3JEZqX2w3JEZbYGwkIjMpKioqKioqKioqKkg4PCMhI0BGY1xsRmlmbC1GJjYlNyRGYGBsNyRGYWBsJCEzJioqKioqKioqKipbQE0iRmNobEZjXGxGaWZsLUYmNiU3JEZmYGw3JEZnYGwkITNVKysrKyspZWkmRmJqbEZjXGxGaWZsLUYmNiU3JEZcYWw3JEZdYWwkITMlKioqKioqKioqKnp1cyJGYmpsRmNcbEZpZmwtRiY2JTckRmJhbDckRmNhbCQiMygqKioqKioqKioqKlI9QSEjQUZjXGxGaWZsLUYmNiU3JEZoYWw3JEZpYWwkITN2KioqKioqKioqKip6XyhGW1xtRmNcbEZpZmwtRiY2JTckRl5ibDckRl9ibCQhMzErKysrKyFbbCNGW1xtRmNcbEZpZmwtRiY2JTckRmRibDckRmVibCQhMyMpKioqKioqKioqKioqeUAhI0JGY1xsRmlmbC1GJjYlNyRGamJsNyRGW2NsJCIzMSsrKysrSSs1RltcbUZjXGxGaWZsLUYmNiU3JEZgY2w3JEZhY2wkIjN6KioqKioqKioqKipcIlJGXl1tRmNcbEZpZmwtRiY2JTckRmZjbDckRmdjbCQiMyMqKioqKioqKioqKioqeicpISNDRmNcbEZpZmwtRiY2JTckRlxkbDckRl1kbCQhM2cqKioqKioqKioqKioqZSdGYV5tRmNcbEZpZmwtRiY2JTckRmJkbDckRmNkbCQiMy0rKysrKyshMyJGYV5tRmNcbEZpZmwtRiY2JTckRmhkbDckRmlkbCQhMzsrKysrKytdRkZhXm1GY1xsRmlmbC1GJjYlNyRGXmVsNyRGX2VsJCEzeSoqKioqKioqKioqKipSKSEjREZjXGxGaWZsLUYmNiU3JEZkZWw3JEZlZWwkIjMpKioqKioqKioqKioqKio+IkZqX21GY1xsRmlmbC1GJjYlNyRGamVsNyRGW2ZsJCEzeSoqKioqKioqKioqKipIJEZqX21GY1xsRmlmbC1GJjYlNyRGYGZsNyRGYWZsJCEzISkqKioqKioqKioqKioqKnAhI0VGY1xsRmlmbC0lK0FYRVNMQUJFTFNHNidRITYiRmFhbS0lJUZPTlRHNiQlKkhFTFZFVElDQUdGZVtsJStIT1JJWk9OVEFMR0ZnYW0tJSVWSUVXRzYkOyQiIzpGZltsJCIjP0ZmW2w7JCEyKSoqKioqKioqKipceDshIzskIiZEMCIhIiU=sur l'axe des abbscissdes apparaissent les points milieu xn de la suite de segments [an,bn] construits par dichotomie la courbe est cell de fpoints:=seq([i,s[i]],i=1..N):plot([points],color=black,thickness=2,style=point);LSUlUExPVEc2KC0lJ0NVUlZFU0c2Izc9NyQkIiIiIiIhJCIzKysrKysrK108ISM8NyQkIiIjRiwkIjMrKysrKysrdj1GLzckJCIiJEYsJCIzKysrKysrXTc9Ri83JCQiIiVGLCQiMysrKysrK3ZWPUYvNyQkIiImRiwkIjMrKysrK11QZj1GLzckJCIiJ0YsJCIzKysrKyt2PW49Ri83JCQiIihGLCQiMysrKytdN0dqPUYvNyQkIiIpRiwkIjMrKysrRCJHOCc9Ri83JCQiIipGLCQiMycqKioqKio+Y14uJz1GLzckJCIjNUYsJCIzLSsrK1cpUjMnPUYvNyQkIiM2RiwkIjMpKioqKioqSHEmZmc9Ri83JCQiIzdGLCQiMy8rKyt1eHJnPUYvNyQkIiM4RiwkIjMjKioqKioqKjMpeTInPUYvNyQkIiM5RiwkIjMvKysrRSQ0Myc9Ri83JCQiIzpGLCQiMyMqKioqKip6MSV6Zz1GLzckJCIjO0YsJCIzMysrKyhwLDMnPUYvNyQkIiM8RiwkIjMrKysrN2IhMyc9Ri83JCQiIz1GLCQiMyEqKioqKioqPXUhMyc9Ri83JCQiIz5GLCQiMzUrKyttayEzJz1GLzckJCIjP0YsJCIzJSoqKioqKiopKWYhMyc9Ri83JCQiI0BGLCQiMyMqKioqKioqXGQhMyc9Ri83JCQiI0FGLCQiMzMrKytxZSEzJz1GLzckJCIjQkYsJCIzKysrKzVlITMnPUYvNyQkIiNDRiwkIjMvKysrU2UhMyc9Ri83JCQiI0RGLCQiMycqKioqKipcJmUhMyc9Ri83JCQiI0VGLCQiMy8rKytbZSEzJz1GLzckJCIjRkYsJCIzIyoqKioqKj4mZSEzJz1GLy0lK0FYRVNMQUJFTFNHNiRRITYiRl90LSUlVklFV0c2JDskIiNbISIjJCIyMysrKysrP3YjISM6OyQiMikqKioqKioqKioqXFo8ISM7JCIyJyoqKioqKioqKipceD1GXnUtJSZTVFlMRUc2IyUmUE9JTlRHLSUqVEhJQ0tORVNTRzYjRjItJSZDT0xPUkc2JiUkUkdCRyRGLCEiIkZcdkZcdg==Les points trac\351s sont ceux de coordonn\351es (n,xn)