restart;with(plots):secu:=50:secu est un nombre maximal d'it\351rations, \351vitant les boucles trop longuesWarning, the name changecoords has been redefinedExercice 3Questions a) et b)impact:=(f,a)->a-f(a)/D(f)(a); NiM+SSdpbXBhY3RHNiJmKjYkSSJmR0YlSSJhR0YlRiU2JEkpb3BlcmF0b3JHRiVJJmFycm93R0YlRiUsJjklIiIiKiYtOSQ2I0YuRi8tLUkiREdGJTYjRjJGMyEiIkY4RiVGJUYlNewton:=proc(f,a,epsilon) local aa,bb,compteur,milieu,suite_m; aa:=a;bb:=impact(f,aa);compteur:=1; while is(abs(bb-aa)>epsilon) and is(compteur<secu) do compteur:=compteur+1;aa:=bb;bb:=impact(f,bb); od; [compteur,aa]; end:Question c)Premier exemplef:=x->x^3-4*x+1;a:=-2;epsilon:=10^(-9);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgqJDkkIiIkIiIiRi4hIiVGMEYwRiVGJUYlNiM+SSJhRzYiISIjNiM+SShlcHNpbG9uRzYiIyIiIiIrKysrKzU=sol:=evalf(Newton(f,a,epsilon)); solution propos\351 par la proc\351dure NewtonNiM+SSRzb2xHNiI3JCQiIiYiIiEkIStUdiFcNiMhIio='f'(sol[2])=evalf(f(sol[2])); valeur de f en ce pointNiMvLUkiZkc2IjYjJCErVHYhXDYjISIqJCIiJUYqDeuxi\350me exemplef:=x->x^3-4*x+1;a:=0;epsilon:=10^(-9);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgqJDkkIiIkIiIiRi4hIiVGMEYwRiVGJUYlNiM+SSJhRzYiIiIhNiM+SShlcHNpbG9uRzYiIyIiIiIrKysrKzU=sol:=evalf(Newton(f,a,epsilon)); solution propos\351 par la proc\351dure NewtonNiM+SSRzb2xHNiI3JCQiIiUiIiEkIislKW8sVEQhIzU='f'(sol[2])=evalf(f(sol[2])); valeur de f en ce pointNiMvLUkiZkc2IjYjJCIrJSlvLFREISM1JCEiIiEiKg==Troisi\350me exemplef:=x->x^3-4*x+1;a:=2;epsilon:=10^(-9);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgqJDkkIiIkIiIiRi4hIiVGMEYwRiVGJUYlNiM+SSJhRzYiIiIjNiM+SShlcHNpbG9uRzYiIyIiIiIrKysrKzU=sol:=evalf(Newton(f,a,epsilon)); solution propos\351 par la proc\351dure NewtonNiM+SSRzb2xHNiI3JCQiIiYiIiEkIitgZSEzJz0hIio='f'(sol[2])=evalf(f(sol[2])); valeur de f en ce pointNiMvLUkiZkc2IjYjJCIrYGUhMyc9ISIqJCEiIkYqIllustration Graphiquef:=x->exp(-x*x/2)-1/2;a:=0.3;epsilon:=10^(-2);NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCYtSSRleHBHNiRJKnByb3RlY3RlZEdGMEkoX3N5c2xpYkdGJTYjLCQqKDkkIiIiRjVGNiNGNiIiI0Y2ISIiRjYjRjlGOEY2RiVGJUYlNiM+SSJhRzYiJCIiJCEiIg==NiM+SShlcHNpbG9uRzYiIyIiIiIkKyI=
<Text-field layout="Heading 1" style="Heading 1"/>SNewton:=proc(f,a,epsilon) local aa,bb,compteur,milieu,suite_m; suite_m:=NULL; aa:=a;bb:=impact(f,aa);compteur:=1;suite_m:=suite_m,aa; while is(abs(bb-aa)>epsilon) and compteur<secu do compteur:=compteur+1;aa:=bb;bb:=(impact(f,bb));suite_m:=suite_m,aa; od; [compteur,suite_m]; end: Graphique:=proc(f,a,b,N,s) local i,segments,courbe,points,st; st:=op(s[1..N]),s[N]; segments:=NULL;points:=NULL; for i from 1 to N do segments:=segments,plot([[s[i],0],[s[i],f(s[i])]],color=blue,thickness=2),plot([[st[i],f(st[i])],[st[i+1],0]],color=green,thickness=1); points:=points,plot([[s[i],0],[s[i],0]],color=black,thickness=2,style=point); od; courbe:=plot(f,a..b,color=red,thickness=3); display(courbe,points,segments); end:
sol:=SNewton(f,a,epsilon):N:=sol[1]:s:=sol[2..N+1]:Graphique(f,0,2,N,s);LSUlUExPVEc2MS0lJ0NVUlZFU0c2JTdTNyQkIiIhRiskIjMrKysrKysrK10hIz03JCQiMzlMTExMM1ZmViEjPiQiM1Nnem4lPi0wKlxGLjckJCIzJ3BtbTtIW0Q6KUYyJCIzT29LVU5KI28nXEYuNyQkIjNMTExMZTAkPUMiRi4kIjMkbystak4qPUJcRi43JCQiM0lMTEwzUkJyO0YuJCIzUStTeWYlPjgnW0YuNyQkIjNZbW07empmKTQjRi4kIjMvRjhiI1ssQXklRi43JCQiMz1MTCRlNDtbXCNGLiQiMyU+TFJuQShlJHAlRi43JCQiM3AqKioqXGkneV0hSEYuJCIzdTVfLSczMG9lJUYuNyQkIjMsTEwkZXpzJEhMRi4kIjM9QT1bbEclM1klRi43JCQiM18qKioqXDdpSV9QRi4kIjM7XDZwKyc9LUslRi43JCQiMyNwbW1tQFh0PSVGLiQiM19pciM0cFAxOyVGLjckJCIzUUxMTDN5X3FYRi4kIjMhZnNGUnk1IzNTRi43JCQiM2kqKioqKipcMSE+KyZGLiQiM3Q9NldaLThDUUYuNyQkIjMoKSoqKioqKlxaL05hRi4kIjNST1EueTcicGkkRi43JCQiMycqKioqKioqXCRmQyZlRi4kIjNbcnBgKSpcMEVNRi43JCQiM0VMTCRlejY6QidGLiQiMyhHUTc8LnNfQiRGLjckJCIzU21tbTs9QyNvJ0YuJCIzYyN5bCZRVTAqKkhGLjckJCIzLW1tbW0jcFMxKEYuJCIzbSY+WEIlNCc9eiNGLjckJCIzXSoqKipcaWBBM3ZGLiQiMzI/KCoqPkdRUGEjRi43JCQiM3NsbW1tKHk4IXpGLiQiM250JD04LV8nPUJGLjckJCIzVisrXWkudEskKUYuJCIzM2pjQlt5JG8xI0YuNyQkIjM5KytdKDN6TXUpRi4kIjM9Q0slej0pSEI9Ri43JCQiMyNwbW07SF8/PCpGLiQiM2spcFc4RjdqYyJGLjckJCIzZW1tO3ppaGwmKkYuJCIzRD9NJCl5aGdHOEYuNyQkIjM5TExMMyNHLCoqKkYuJCIzQyUpSFxSVEhyNUYuNyQkIjM8TExlenc1VjUhIzwkIjMiW2FPXnBhKy8pRjI3JCQiMyEqKioqXFBRI1wiMyJGZXMkIjM2LlpuczcsQGRGMjckJCIzQkxMJGUiKltINyJGZXMkIjMsVzFqPXU8S0tGMjckJCIzIyoqKioqKipwdnhsNkZlcyQiM0FIOitJLiE0J28hIz83JCQiM3oqKioqXF9xbjI3RmVzJCEzKyUqPkxUXmJzPEYyNyQkIjMlKSoqKlxpJnBAWzdGZXMkITM2XiYzJ1szZTlURjI3JCQiMyMpKioqKlwyJ0hLSCJGZXMkITMhM2t1KD5MXmxtRjI3JCQiM19tbW13YW5MOEZlcyQhMycpKnpTWGxCdiEqKUYyNyQkIjMnKioqKioqXDJnb1AiRmVzJCEzNjsmPW5dXVY3IkYuNyQkIjNDTExlUjwqZlQiRmVzJCEzIypbYiVRIjRYSThGLjckJCIzJyoqKioqKlwpSHhlOUZlcyQhM1dYbnR5WElcOkYuNyQkIjNZbW0iSCFvLSpcIkZlcyQhM0MnNClwVVR0WzxGLjckJCIzKSkqKipcN2suNmEiRmVzJCEzUSYpKSpHdEg8XT5GLjckJCIzZW1tbVQ5QyNlIkZlcyQhM1M4Tl8iSFcqUkBGLjckJCIzIioqKipcaSEqM2BpIkZlcyQhM0ElSCEpZSc+IzNMI0YuNyQkIjNRTExMJCp6eW07RmVzJCEzJWUrc3U0IylwXSNGLjckJCIzR0xMJDNOMSM0PEZlcyQhM2NGalApXFkjekVGLjckJCIza21tIkhZdDd2IkZlcyQhM0IxQ0E5VjtVR0YuNyQkIjMlKioqKioqKnAoRyoqeSJGZXMkITN5L1RqYEQiXClIRi43JCQiM2xtbTs5QEJNPUZlcyQhMzZPNi4nKUdPU0pGLjckJCIzRUxMTGB2JlEoPUZlcyQhMytJJyopel0oM3NLRi43JCQiMzArK0RPbDU7PkZlcyQhMyk+VSFmSkouME1GLjckJCIzLysrdi5VYWM+RmVzJCEzPCRvQV9oYl5fJEYuNyQkIiIjRiskITMpSChRam5ya1lPRi4tJSpUSElDS05FU1NHNiMiIiQtJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkRitGZltsRmdbbC1GJjYmNyQ3JCQiMykpKioqKioqKioqKioqKipIRi5GKkZbXGwtJSZTVFlMRUc2IyUmUE9JTlRHLUZdW2w2I0Zpei1GYVtsNiZGY1tsRmdbbEZnW2xGZ1tsLUYmNiY3JDckJCIzMSsrK25OJioqKT1GZXNGKkZpXGxGXlxsRmJcbEZkXGwtRiY2JjckNyQkIjNMKysrSTEtNCUpRi5GKkZfXWxGXlxsRmJcbEZkXGwtRiY2JjckNyQkIjMhKioqKioqNGk7TD0iRmVzRipGZV1sRl5cbEZiXGxGZFxsLUYmNiU3JEZbXGw3JEZcXGwkIjMlKioqKioqeiJbKCpmWEYuRmJcbC1GYVtsNiZGY1tsRmdbbEZnW2xGZFtsLUYmNiU3JEZbXmxGaVxsLUZdW2w2IyIiIi1GYVtsNiZGY1tsRmdbbEZkW2xGZ1tsLUYmNiU3JEZpXGw3JEZqXGwkITMjKioqKioqcEFWT0skRi5GYlxsRl5ebC1GJjYlNyRGW19sRl9dbEZjXmxGZl5sLUYmNiU3JEZfXWw3JEZgXWwkIjM4KysrbDsmPS0jRi5GYlxsRl5ebC1GJjYlNyRGZF9sRmVdbEZjXmxGZl5sLUYmNiU3JEZlXWw3JEZmXWwkITM7KysrK0QlUVokRmd0RmJcbEZeXmwtRiY2JTckRl1gbEZlXWxGY15sRmZebC0lK0FYRVNMQUJFTFNHNidRITYiRmZgbC0lJUZPTlRHNiQlKkhFTFZFVElDQUdGZVtsJStIT1JJWk9OVEFMR0ZcYWwtJSVWSUVXRzYkO0ZnW2wkIiM/RmZbbDskITFebCk0NiFlPlEhIzskIjF5RU5WSCRIPCZGZmFssur l'axe des abbscissdes apparaissent les points de la suite x(n+1)=impact(xn,f) la courbe est cell de fpoints:=seq([i,s[i]],i=1..N):plot([points],color=black,thickness=2,style=point);LSUlUExPVEc2KC0lJ0NVUlZFU0c2IzcmNyQkIiIiIiIhJCIzKSkqKioqKioqKioqKioqKkghIz03JCQiIiNGLCQiMzErKytuTiYqKik9ISM8NyQkIiIkRiwkIjNMKysrSTEtNCUpRi83JCQiIiVGLCQiMyEqKioqKio0aTtMPSJGNS0lK0FYRVNMQUJFTFNHNiRRITYiRkMtJSpUSElDS05FU1NHNiNGMi0lJlNUWUxFRzYjJSZQT0lOVEctJSVWSUVXRzYkOyQiMSkqKioqKioqKioqKipSKiEjOyQiJDElISIjOyQiMi8rK21HND9vI0Y1JCIyKytTJFFFdkA+RlItJSZDT0xPUkc2JiUkUkdCRyRGLCEiIkZpbkZpbg==Les points trac\351s sont ceux de coordonn\351es (n,xn)Un ph\351nom\350ne cycliquef:=x->x*(x^2-16)/20;a:=4/sqrt(5);epsilon:=1:NiM+SSJmRzYiZio2I0kieEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCQqJjkkIiIiLCYqJEYuIiIjRi8hIztGL0YvI0YvIiM/RiVGJUYlNiM+SSJhRzYiLCQqJCIiJiMiIiIiIiMjIiIlRig=sol:=SNewton(f,a,epsilon):N:=sol[1]:s:=sol[2..N+1]:Graphique(f,-2,2,N,s);LSUlUExPVEc2ZXQtJSdDVVJWRVNHNiU3UzckJCEiIyIiISQiMzsrKysrKysrNyEjPDckJCEzTUxMTCRRNkciPkYvJCIzc0lWJypmW0ohPSJGLzckJCEzYm1tO00hXHAkPUYvJCIzRXlkN2kzamY2Ri83JCQhM01MTEwpKVFqXjxGLyQiMyg0ekZBNChlSzZGLzckJCEzQUxMTD1Ldmw7Ri8kIjNVXiYpNClbLDo1IkYvNyQkITN3bW07QzJHIWUiRi8kIjNXVFBvU1EhcDEiRi83JCQhM09MTCQzeU81XSJGLyQiM1FLUkFwI0g8LiJGLzckJCEzJioqKioqXG5VKSo9OUYvJCIzOEFlXEYsSUIqKiEjPTckJCEzU0xMJDNXRFRMIkYvJCIzJVJ0KHAqei9kWypGUzckJCEzNSsrXWQoUSZcN0YvJCIzIj1CaSMpPkczLSpGUzckJCEzZ21tbWM0YGk2Ri8kIjNzUTBJOytvOSYpRlM3JCQhM0tMTExRVyplMyJGLyQiM0kwZy00LSRwLylGUzckJCEzdysrKysoKT4nKioqRlMkIjMjKVIjeiNRKkd2XChGUzckJCEzRSsrKyswIipIIipGUyQiM2REVDBVYFRCcEZTNyQkITM1KysrKzgzJkgpRlMkIjNvZ05yNyZ6MU4nRlM3JCQhM1xMTEwzayhwYChGUyQiMzpkIz5gTDNiImVGUzckJCEzQW5tbW1qXk5tRlMkIjM7aEpiVj5MaV5GUzckJCEzKXptbW1ZaD0oZUZTJCIzI0c0azIkPkUnZiVGUzckJCEzKywrK3YjXE4pXEZTJCIzeV9lciVIYVwjUkZTNyQkITNjb21tbUNDKD4lRlMkIjNfIm9xKCopRyMzSyRGUzckJCEzOSoqKioqXEZSWEwkRlMkIjN3XDg9JnojNFxFRlM3JCQhM3QqKioqKlwjPS84REZTJCIzYSEqcCVSMClcLT9GUzckJCEzPW1tbTthKmVsIkZTJCIzPkNASTRoV0E4RlM3JCQhM2tvbW07V24obykhIz4kIjNHdSJvQio0J28lcEZcczckJCEzSXFMTEwkZVYoPiEjPyQiM2UhSGI9RydbejpGYnM3JCQiMylRam1tImZgQCcpRlxzJCEzLXF4XSxYLSUqb0ZcczckJCIzJXoqKioqXG5aKUg7RlMkITMmeXE2TlA4PEkiRlM3JCQiM2NrbW07JHkqZUNGUyQhM0MoUjVkWFsoZj5GUzckJCIzZikqKioqKipSXmJKJEZTJCEzPHBEJykpUTxVaiNGUzckJCIzJ2UqKioqKlw1YWBURlMkITNBbD0jZWYvcUckRlM3JCQiMydvKioqKlw3UlYnXEZTJCEzTSdRX3gxKkg1UkZTNyQkIjNZJyoqKioqXEBma2VGUyQhM3lSIylwbj4jM2YlRlM3JCQiM19JTExMJjRObidGUyQhM3ViKikqKj1HPyE+JkZTNyQkIjNBKioqKioqKlwsc2AoRlMkITNBTyVSI0cjcGMiZUZTNyQkIjMlW21tO3pNKT4kKUZTJCEzKSozKG9KISk+ek8nRlM3JCQiM00qKioqKioqcGZhPCpGUyQhM1tNVDokNEpUJnBGUzckJCIzOUhMTGVnYCEpKipGUyQhMyFcPkcqZUZNKFsoRlM3JCQiM3cqKioqXCNHMkEzIkYvJCEzM3dgTytEJFItKUZTNyQkIjM7TExMJClHW2s2Ri8kITM0QiRSQyE9TEUmKUZTNyQkIjMjKSoqKipcN3loXTdGLyQhMzUkPWloR0pwLSpGUzckJCIzeG1tbScpZmRMOEYvJCEzISpwVCNbXnZGWypGUzckJCIzYm1tbSxGVD05Ri8kITMybkdJIj5gLyMqKkZTNyQkIjNGTEwkZSNwYS06Ri8kITNkQVskR1xFQy4iRi83JCQiMyEqKioqKioqUnYmKXo6Ri8kITMhWyc9d3NQc201Ri83JCQiM0lMTExHVVlvO0YvJCEzbS8rMTQsYS02Ri83JCQiM19tbW0xXnJaPEYvJCEzOHA2TyllXjc4IkYvNyQkIjM0Kytdc0lASz1GLyQhM20hKnlFZklCZTZGLzckJCIzNCsrXTIlKTM4PkYvJCEzIz5DMCo9V1EhPSJGLzckJCIiI0YsJCEzOysrKysrKys3Ri8tJSpUSElDS05FU1NHNiMiIiQtJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkRixGZ1tsRmhbbC1GJjYmNyQ3JCQiMyU+JCkqKj5RYSkpeSJGLyRGLEYsRlxcbC0lJlNUWUxFRzYjJSZQT0lOVEctRl5bbDYjRmp6LUZiW2w2JkZkW2xGaFtsRmhbbEZoW2wtRiY2JjckNyQkITMlPiQpKio+UWEpKXkiRi9GX1xsRltdbEZgXGxGZFxsRmZcbEZpW2xGaFxsRmlbbEZoXGxGaVtsRmhcbEZpW2xGaFxsRmlbbEZoXGxGaVtsRmhcbEZpW2xGaFxsRmlbbEZoXGxGaVtsRmhcbEZpW2xGaFxsRmlbbEZoXGxGaVtsRmhcbEZpW2xGaFxsRmlbbEZoXGxGaVtsRmhcbEZpW2xGaFxsRmlbbEZoXGxGaVtsRmhcbEZpW2xGaFxsRmlbbEZoXGxGaVtsRmhcbEZpW2xGaFxsRmlbbEZoXGxGaVtsRmhcbC1GJjYlNyRGXFxsNyRGXVxsJCEzVSMqKXpXIW8nWzkiRi9GZFxsLUZiW2w2JkZkW2xGaFtsRmhbbEZlW2wtRiY2JTckRmFdbEZbXWwtRl5bbDYjIiIiLUZiW2w2JkZkW2xGaFtsRmVbbEZoW2wtRiY2JTckRltdbDckRlxdbCQiM1UjKil6VyFvJ1s5IkYvRmRcbEZkXWwtRiY2JTckRmFebEZcXGxGaV1sRlxebEZeXWxGZl1sRl5ebEZkXmxGXl1sRmZdbEZeXmxGZF5sRl5dbEZmXWxGXl5sRmRebEZeXWxGZl1sRl5ebEZkXmxGXl1sRmZdbEZeXmxGZF5sRl5dbEZmXWxGXl5sRmRebEZeXWxGZl1sRl5ebEZkXmxGXl1sRmZdbEZeXmxGZF5sRl5dbEZmXWxGXl5sRmRebEZeXWxGZl1sRl5ebEZkXmxGXl1sRmZdbEZeXmxGZF5sRl5dbEZmXWxGXl5sRmRebEZeXWxGZl1sRl5ebEZkXmxGXl1sRmZdbEZeXmxGZF5sRl5dbEZmXWxGXl5sRmRebEZeXWxGZl1sRl5ebEZkXmxGXl1sRmZdbEZeXmxGZF5sRl5dbEZmXWxGXl5sRmRebEZeXWxGZl1sRl5ebEZkXmxGXl1sRmZdbEZeXmxGZF5sRl5dbEZmXWxGXl5sRmRebEZeXWxGZl1sRl5ebEZkXmxGXl1sRmZdbEZeXmxGZF5sRl5dbEZmXWxGXl5sLUYmNiU3JEZhXmxGW11sRmldbEZcXmwtJStBWEVTTEFCRUxTRzYnUSE2IkZdX2wtJSVGT05URzYkJSpIRUxWRVRJQ0FHRmZbbCUrSE9SSVpPTlRBTEdGY19sLSUlVklFV0c2JDskRmJzRmdbbCQiIz9GZ1tsOyQhJVs3ISIkJCIlWzdGXmBsQuelques explications. Que ce soit dans la m\351thode de Cauchy-Picard ou celle de Newton-Raphson, il s'agit d'approcher les solutions par une suite du type u(n+1)=g(un)Comme on l'a vu dans le cas du point fixe de Cauchy-Picard, une petite valeur de la constant k, permet d'assurer le caract\350re contractant de g:x->x-kf(x) (au moins localement) en particulier si |f'| est petit la m\351thode de Cauchy-Picard semble adapt\351. En revanche des grandes valeurs de f' peuvent faire craindre la perte du caract\350re contractant Dans le cas Newton-Raphson, la constante k devient varaible (et s'adapte d'autant mieux au choix de f, qu'il s'agit de f') g:x->x-f(x)/f'(x)... Ici c'est lorsque |f'| est grand (courbe tr\350s pentue) que la m\351thode est d'autant plus efficace. En revanche plus la d\351riv\351e est petite (pente quasi-horizontale) plus le point d'impact s'eloigne dangeruesement de la solution.