restart; with(linalg);Warning, the protected names norm and trace have been redefined and unprotectedNiM3XnJJLkJsb2NrRGlhZ29uYWxHNiJJLEdyYW1TY2htaWR0R0YlSSxKb3JkYW5CbG9ja0dGJUkpTFVkZWNvbXBHRiVJKVFSZGVjb21wR0YlSSpXcm9uc2tpYW5HRiVJJ2FkZGNvbEdGJUknYWRkcm93R0YlSSRhZGpHRiVJKGFkam9pbnRHRiVJJmFuZ2xlR0YlSShhdWdtZW50R0YlSShiYWNrc3ViR0YlSSViYW5kR0YlSSZiYXNpc0dGJUknYmV6b3V0R0YlSSxibG9ja21hdHJpeEdGJUkoY2hhcm1hdEdGJUkpY2hhcnBvbHlHRiVJKWNob2xlc2t5R0YlSSRjb2xHRiVJJ2NvbGRpbUdGJUkpY29sc3BhY2VHRiVJKGNvbHNwYW5HRiVJKmNvbXBhbmlvbkdGJUknY29uY2F0R0YlSSVjb25kR0YlSSljb3B5aW50b0dGJUkqY3Jvc3Nwcm9kR0YlSSVjdXJsR0YlSSlkZWZpbml0ZUdGJUkoZGVsY29sc0dGJUkoZGVscm93c0dGJUkkZGV0R0YlSSVkaWFnR0YlSShkaXZlcmdlR0YlSShkb3Rwcm9kR0YlSSplaWdlbnZhbHNHRiVJLGVpZ2VudmFsdWVzR0YlSS1laWdlbnZlY3RvcnNHRiVJK2VpZ2VudmVjdHNHRiVJLGVudGVybWF0cml4R0YlSSZlcXVhbEdGJUksZXhwb25lbnRpYWxHRiVJJ2V4dGVuZEdGJUksZmZnYXVzc2VsaW1HRiVJKmZpYm9uYWNjaUdGJUkrZm9yd2FyZHN1YkdGJUkqZnJvYmVuaXVzR0YlSSpnYXVzc2VsaW1HRiVJKmdhdXNzam9yZEdGJUkoZ2VuZXFuc0dGJUkqZ2VubWF0cml4R0YlSSVncmFkR0YlSSloYWRhbWFyZEdGJUkoaGVybWl0ZUdGJUkoaGVzc2lhbkdGJUkoaGlsYmVydEdGJUkraHRyYW5zcG9zZUdGJUkpaWhlcm1pdGVHRiVJKmluZGV4ZnVuY0dGJUkqaW5uZXJwcm9kR0YlSSlpbnRiYXNpc0dGJUkoaW52ZXJzZUdGJUknaXNtaXRoR0YlSSppc3NpbWlsYXJHRiVJJ2lzemVyb0dGJUkpamFjb2JpYW5HRiVJJ2pvcmRhbkdGJUkna2VybmVsR0YlSSpsYXBsYWNpYW5HRiVJKmxlYXN0c3Fyc0dGJUkpbGluc29sdmVHRiVJJ21hdGFkZEdGJUknbWF0cml4RzYkSSpwcm90ZWN0ZWRHRltwSShfc3lzbGliR0YlSSZtaW5vckdGJUkobWlucG9seUdGJUknbXVsY29sR0YlSSdtdWxyb3dHRiVJKW11bHRpcGx5R0YlSSVub3JtR0Zqb0kqbm9ybWFsaXplR0YlSSpudWxsc3BhY2VHRiVJJ29ydGhvZ0dGJUkqcGVybWFuZW50R0YlSSZwaXZvdEdGJUkqcG90ZW50aWFsR0YlSStyYW5kbWF0cml4R0YlSStyYW5kdmVjdG9yR0YlSSVyYW5rR0YlSShyYXRmb3JtR0YlSSRyb3dHRiVJJ3Jvd2RpbUdGJUkpcm93c3BhY2VHRiVJKHJvd3NwYW5HRiVJJXJyZWZHRiVJKnNjYWxhcm11bEdGJUktc2luZ3VsYXJ2YWxzR0YlSSZzbWl0aEdGJUksc3RhY2ttYXRyaXhHRiVJKnN1Ym1hdHJpeEdGJUkqc3VidmVjdG9yR0YlSSlzdW1iYXNpc0dGJUkoc3dhcGNvbEdGJUkoc3dhcHJvd0dGJUkqc3lsdmVzdGVyR0YlSSl0b2VwbGl0ekdGJUkmdHJhY2VHRmpvSSp0cmFuc3Bvc2VHRiVJLHZhbmRlcm1vbmRlR0YlSSp2ZWNwb3RlbnRHRiVJKHZlY3RkaW1HRiVJJ3ZlY3RvckdGam9JKndyb25za2lhbkdGJQ==
<Text-field layout="Heading 1" style="Heading 1"/>taille:=proc(A) local t,u,n,p; t:=[op(2,evalm(A))]; n:=op(2,t[1]);p:=op(2,t[2]); [n,p]; end:diagonale:=proc(X) local i,j,n,B; n:=taille(X)[2]; B:=array(1..n,1..n); for i from 1 to n do for j from 1 to n do B[i,j]:=0; od; B[i,i]:=X[1,i]; od; evalm(B); end:filtre:=proc(X,r) local i,j,t,B,C; t:=taille(X); B:=array(1..r,1..t[2]-r); C:=array(1..r,1..r); for i from 1 to r do for j from 1 to r do C[i,j]:=X[i,j]; od; for j from 1 to t[2]-r do B[i,j]:=X[i,j+r]; od; od; evalm(C),evalm(B); end:Permut_ligne:=proc(i,j,A) local B,k,t; t:=taille(A); B:=array(1..t[1],1..t[2]); B:=evalm(A); for k from 1 to t[2] do B[i,k]:=A[j,k]; B[j,k]:=A[i,k]; od; evalm(B); end: Dilat_ligne:=proc(a,i,A) local k,t,B; t:=taille(A); B:=array(1..t[1],1..t[2]); B:=evalm(A); for k from 1 to t[2] do B[i,k]:=simplify(a*A[i,k]); od; evalm(B); end:Transvect_ligne:=proc(i,a,j,A) local k,t,B; t:=taille(A); B:=array(1..t[1],1..t[2]); B:=evalm(A); for k from 1 to t[2] do B[i,k]:=simplify(A[i,k]+a*A[j,k]); od; evalm(B); end:CherchePivot_colonne:=proc(A,i) local t,k; t:=taille(A); if is(i>t[1])then RETURN(IMPOSSIBLE); fi; for k from i to t[1] do if is(A[k,i]<>0) then RETURN(k); fi; od; RETURN(0); end:Permut_colonne:=proc(i,j,A) local B,k,t; t:=taille(A); B:=array(1..t[1],1..t[2]); B:=evalm(A); for k from 1 to t[1] do B[k,i]:=A[k,j]; B[k,j]:=A[k,i]; od; evalm(B); end: zero_sur_pivot_historique:=proc(i,A) local t,B,k,hist; hist:=NULL; t:=taille(A); B:=array(1..t[1],1..t[2]); B:=evalm(A); if is(i>t[2]) or is(i>t[1]) or is(B[i,i]<>1) then RETURN(IMPOSSIBLE); fi; for k from 1 to i-1 do if B[k,i]<>0 then hist:=hist,["Transvection_ligne",k,-B[k,i],i]; fi; hist contient la s\351quence des op\351rations \351l\351mentaires effectu\351es sur B B:=Transvect_ligne(k,-B[k,i],i,B); od; evalm(B),[hist]; end: zero_sous_pivot_historique:=proc(i,A) local t,B,k,hist,r; hist:=NULL; t:=taille(A); B:=array(1..t[1],1..t[2]); B:=evalm(A); if is(i>t[2]) or is(i>t[1]) or is(B[i,i]=0) then RETURN(IMPOSSIBLE); fi; if (B[i,i]<>1 ) then hist:=hist,["Dilate_ligne",1/B[i,i],i]; fi; B:=Dilat_ligne(1/B[i,i],i,B); for k from i+1 to t[1] do if B[k,i]<>0 then hist:=hist,["Transvection_ligne",k,-B[k,i],i]; fi; hist contient la s\351quence des op\351rations \351l\351mentaires effectu\351es sur B B:=Transvect_ligne(k,-B[k,i],i,B); od; evalm(B),[hist]; end:Gauss_historique:=proc(A,opt) local T,i,j,t,k,hist,r,temp; hist:=NULL; t:=taille(A); T:=array(1..t[1],1..t[2]); T:=evalm(A); for j from 1 to t[2] do i:=CherchePivot_colonne(T,j); if opt="colonnes" then k:=j+1; while(i=0 and k<t[2]+1) do hist:=hist,["Echange_colonne",j,k]; T:=Permut_colonne(j,k,T); i:=CherchePivot_colonne(T,j); k:=k+1; od; fi; if i<>0 then T:=Permut_ligne(i,j,T); if (i<>j) then hist:=hist,["Echange_ligne",i,j]; fi; temp:=zero_sous_pivot_historique(j,T); T:=temp[1]; hist:=hist,op(temp[2]); fi; od; if opt="CRAMER" then if (sum(T[k,k],k=1..t[1])<>t[1]) then RETURN(IMPOSSIBLE) fi; for j from t[1] to 1 by -1 do temp:=zero_sur_pivot_historique(j,T); T:=temp[1]; hist:=hist,op(temp[2]); od; fi; [hist]; end:Ginverse:=proc(A) local T,B,j,k,q,t,m,hist,texte; t:=taille(A); T:=array(1..t[1],1..t[2]); B:=array(1..t[1],1..t[2]); for j from 1 to t[1] do for k from 1 to t[1] do T[j,k]:=0; od; tous les coefficients de la ligne j sont nulls T[j,j]:=1; sauf celui d'indice j od; On a a obtenu jusqu'ici la matrice identit\351 B:=evalm(A); hist:=Gauss_historique(A,"CRAMER"); m:=nops(hist); print(B, "........" , T); for j from 1 to m do q:=hist[j]; if q[1]="Echange_ligne" then T:=Permut_ligne(q[2],q[3],T);B:=Permut_ligne(q[2],q[3],B);texte:='L'[q[2]],"<--->",'L'[q[3]]; elif q[1]="Echange_colonne" then T:=Permut_colonne(q[2],q[3],T);B:=Permut_colonne(q[2],q[3],B);texte:='C'[q[2]],"<--->",'C'[q[3]]; elif q[1]="Dilate_ligne" then T:=Dilat_ligne(q[2],q[3],T);B:=Dilat_ligne(q[2],q[3],B);texte:='L'[q[3]],"<----",q[2]*'L'[q[3]]; elif q[1]="Transvection_ligne" then T:=Transvect_ligne(q[2],q[3],q[4],T);B:=Transvect_ligne(q[2],q[3],q[4],B);texte:='L'[q[2]],"<----",'L'[q[2]]+q[3]*'L'[q[4]]; fi; print(B,texte,T); od; end:Grang:=proc(A) local B,j,k,q,t,m,hist,r,texte; t:=taille(A); B:=array(1..t[1],1..t[2]); B:=evalm(A); hist:=Gauss_historique(A,"colonnes"); m:=nops(hist); print("........" , B); for j from 1 to m do q:=hist[j]; if q[1]="Echange_ligne" then B:=Permut_ligne(q[2],q[3],B);texte:='L'[q[2]],"<--->",'L'[q[3]]; elif q[1]="Echange_colonne" then B:=Permut_colonne(q[2],q[3],B);texte:='C'[q[2]],"<--->",'C'[q[3]]; elif q[1]="Dilate_ligne" then B:=Dilat_ligne(q[2],q[3],B);texte:='L'[q[3]],"<----",q[2]*'L'[q[3]]; elif q[1]="Transvection_ligne" then B:=Transvect_ligne(q[2],q[3],q[4],B);texte:='L'[q[2]],"<----",'L'[q[2]]+q[3]*'L'[q[4]]; fi; print(texte,B); od; end:Grang_inverse:=proc(A,C) local B,j,k,q,t,m,hist,r,texte; t:=taille(C); B:=array(1..t[1],1..t[2]); B:=evalm(C); hist:=Gauss_historique(A,"colonnes"); m:=nops(hist); print("........" , B); for j from m to 1 by -1 do q:=hist[j]; if q[1]="Echange_ligne" then B:=Permut_ligne(q[2],q[3],B);texte:='L'[q[2]],"<--->",'L'[q[3]]; elif q[1]="Echange_colonne" then B:=Permut_colonne(q[2],q[3],B);texte:='C'[q[2]],"<--->",'C'[q[3]]; elif q[1]="Dilate_ligne" then B:=Dilat_ligne(1/q[2],q[3],B);texte:='L'[q[3]],"<----",1/q[2]*'L'[q[3]]; elif q[1]="Transvection_ligne" then B:=Transvect_ligne(q[2],-q[3],q[4],B);texte:='L'[q[2]],"<----",'L'[q[2]]-q[3]*'L'[q[4]]; fi; print(texte,B); od; end:Gsyst_cramer:=proc(A,X,Y) local B,Z,Xt,j,k,q,t,m,hist,r,texte; t:=taille(A); B:=array(1..t[1],1..t[2]); B:=evalm(A); Z:=array(1..t[1],1..1); Z:=evalm(transpose([Y])); Xt:=array(1..t[2],1..1); Xt:=evalm(transpose([X])); hist:=Gauss_historique(A,"CRAMER"); m:=nops(hist); print("........" ,evalm(B&*Xt),"=",Z); for j from 1 to m do q:=hist[j]; if q[1]="Echange_ligne" then Z:=Permut_ligne(q[2],q[3],Z);B:=Permut_ligne(q[2],q[3],B);texte:='L'[q[2]],"<--->",'L'[q[3]]; elif q[1]="Echange_colonne" then Xt:=Permut_colonne(q[2],q[3],Xt);B:=Permut_colonne(q[2],q[3],B);texte:='C'[q[2]],"<--->",'C'[q[3]]; elif q[1]="Dilate_ligne" then Z:=Dilat_ligne(q[2],q[3],Z);B:=Dilat_ligne(q[2],q[3],B);texte:='L'[q[3]],"<----",q[2]*'L'[q[3]]; elif q[1]="Transvection_ligne" then Z:=Transvect_ligne(q[2],q[3],q[4],Z);B:=Transvect_ligne(q[2],q[3],q[4],B);texte:='L'[q[2]],"<----",'L'[q[2]]+q[3]*'L'[q[4]]; fi; print(texte,evalm(B&*Xt),"=",Z); od; end:Gsyst:=proc(A,X,Y) local B,Z,Xt,Xd,j,k,q,t,m,r,hist,texte,param,F,Bc,Zc,Xtc; t:=taille(A); B:=array(1..t[1],1..t[2]); B:=evalm(A); Z:=array(1..t[1],1..1); Z:=evalm(transpose([Y])); Xt:=evalm([X]); Xd:=diagonale(Xt); hist:=Gauss_historique(A,"colonnes"); m:=nops(hist); print("........" ,evalm(B&*Xd),"=",Z); for j from 1 to m do q:=hist[j]; if q[1]="Echange_ligne" then Z:=Permut_ligne(q[2],q[3],Z);B:=Permut_ligne(q[2],q[3],B);texte:='L'[q[2]],"<--->",'L'[q[3]]; elif q[1]="Echange_colonne" then Xt:=Permut_colonne(q[2],q[3],Xt);B:=Permut_colonne(q[2],q[3],B);texte:='C'[q[2]],"<--->",'C'[q[3]]; elif q[1]="Dilate_ligne" then Z:=Dilat_ligne(q[2],q[3],Z);B:=Dilat_ligne(q[2],q[3],B);texte:='L'[q[3]],"<----",q[2]*'L'[q[3]]; elif q[1]="Transvection_ligne" then Z:=Transvect_ligne(q[2],q[3],q[4],Z);B:=Transvect_ligne(q[2],q[3],q[4],B);texte:='L'[q[2]],"<----",'L'[q[2]]+q[3]*'L'[q[4]]; fi; Xd:=diagonale(Xt); print(texte,evalm(B&*Xd),"=",Z); od; r:=add(B[i,i],i=1..min(t[1],t[2])); print("Conclusion: Sous la condition d'avoir la compatibilit\351 des",t[1]-r, "derni\350res \351quations"); for j from r+1 to t[1] do print(Z[j,1]=0); od; param:=seq(Xt[1,j],j=r+1..t[2]); print("En prenant alors ",param, "comme param\351tres"); print("On est donc ramen\351 \340 la resolution du syst\350me de CRAMER"); F:=filtre(B,r); Bc:=F[1];Zc:=evalm(transpose([[seq(Z[j,1],j=1..r)]])-F[2]&*transpose([[param]])); Xtc:=transpose([[seq(Xt[1,j],j=1..r)]]); #CRAMER hist:=Gauss_historique(Bc,"CRAMER"); m:=nops(hist); print("........" ,evalm(Bc&*Xtc),"=",Zc); for j from 1 to m do q:=hist[j]; if q[1]="Echange_ligne" then Zc:=Permut_ligne(q[2],q[3],Zc);Bc:=Permut_ligne(q[2],q[3],Bc);texte:='L'[q[2]],"<--->",'L'[q[3]]; elif q[1]="Echange_colonne" then Xtc:=Permut_ligne(q[2],q[3],Xtc);Bc:=Permut_colonne(q[2],q[3],Bc);texte:='C'[q[2]],"<--->",'C'[q[3]]; elif q[1]="Dilate_ligne" then Zc:=Dilat_ligne(q[2],q[3],Zc);Bc:=Dilat_ligne(q[2],q[3],Bc);texte:='L'[q[3]],"<----",q[2]*'L'[q[3]]; elif q[1]="Transvection_ligne" then Zc:=Transvect_ligne(q[2],q[3],q[4],Zc);Bc:=Transvect_ligne(q[2],q[3],q[4],Bc);texte:='L'[q[2]],"<----",'L'[q[2]]+q[3]*'L'[q[4]]; fi; print(texte,evalm(Bc&*Xtc),"=",Zc); od; end:
R\351solution d'un syst\350meA:=array(1..4,1..4): for i from 1 to 4 do for j from 1 to 4 do A[i,j]:=i+j: od:od:A=evalm(A);NiMvSSJBRzYiLUknbWF0cml4RzYkSSpwcm90ZWN0ZWRHRilJKF9zeXNsaWJHRiU2IzcmNyYiIiMiIiQiIiUiIiY3JkYvRjBGMSIiJzcmRjBGMUYzIiIoNyZGMUYzRjUiIik=Gsyst(A,[x,y,z,t],[6,7,8,9]);NiZRKS4uLi4uLi4uNiItSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGKEkoX3N5c2xpYkdGJDYjNyY3JiwkSSJ4R0YkIiIjLCRJInlHRiQiIiQsJEkiekdGJCIiJSwkSSJ0R0YkIiImNyYsJEYuRjIsJEYxRjUsJEY0RjgsJEY3IiInNyYsJEYuRjUsJEYxRjgsJEY0Rj4sJEY3IiIoNyYsJEYuRjgsJEYxRj4sJEY0RkQsJEY3IiIpUSI9RiQtRiY2IzcmNyNGPjcjRkQ3I0ZKNyMiIio=NigmSSJMRzYiNiMiIiJRJjwtLS0tRiUsJEYjI0YnIiIjLUknbWF0cml4RzYkSSpwcm90ZWN0ZWRHRi9JKF9zeXNsaWJHRiU2IzcmNyZJInhHRiUsJEkieUdGJSMiIiRGKywkSSJ6R0YlRissJEkidEdGJSMiIiZGKzcmLCRGNEY4LCRGNiIiJSwkRjpGPiwkRjwiIic3JiwkRjRGQiwkRjZGPiwkRjpGRSwkRjwiIig3JiwkRjRGPiwkRjZGRSwkRjpGSywkRjwiIilRIj1GJS1GLTYjNyY3I0Y4NyNGSzcjRlE3IyIiKg==NigmSSJMRzYiNiMiIiNRJjwtLS0tRiUsJkYjIiIiJkYkNiNGKiEiJC1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM3JjcmSSJ4R0YlLCRJInlHRiUjIiIkRicsJEkiekdGJUYnLCRJInRHRiUjIiImRic3JiIiISwkRjgjISIiRicsJEY8RkUsJEY+I0YtRic3JiwkRjYiIiUsJEY4RkAsJEY8IiInLCRGPiIiKDcmLCRGNkZALCRGOEZOLCRGPEZQLCRGPiIiKVEiPUYlLUYvNiM3JjcjRjo3IyEiIzcjRlY3IyIiKg==NigmSSJMRzYiNiMiIiRRJjwtLS0tRiUsJkYjIiIiJkYkNiNGKiEiJS1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM3JjcmSSJ4R0YlLCRJInlHRiUjRiciIiMsJEkiekdGJUY6LCRJInRHRiUjIiImRjo3JiIiISwkRjgjISIiRjosJEY8RkUsJEY+IyEiJEY6NyZGQiwkRjhGRSwkRjwhIiMsJEY+Rkk3JiwkRjZGQCwkRjgiIicsJEY8IiIoLCRGPiIiKVEiPUYlLUYvNiM3JjcjRic3I0ZNNyNGLTcjIiIqNigmSSJMRzYiNiMiIiVRJjwtLS0tRiUsJkYjIiIiJkYkNiNGKiEiJi1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM3JjcmSSJ4R0YlLCRJInlHRiUjIiIkIiIjLCRJInpHRiVGOywkSSJ0R0YlIyIiJkY7NyYiIiEsJEY4IyEiIkY7LCRGPUZGLCRGPyMhIiRGOzcmRkMsJEY4RkYsJEY9ISIjLCRGP0ZKNyZGQywkRjhGSSwkRj1GSiwkRj8jISIqRjtRIj1GJS1GLzYjNyY3I0Y6NyNGTjcjISIlNyMhIic=NigmSSJMRzYiNiMiIiNRJjwtLS0tRiUsJEYjISIjLUknbWF0cml4RzYkSSpwcm90ZWN0ZWRHRi5JKF9zeXNsaWJHRiU2IzcmNyZJInhHRiUsJEkieUdGJSMiIiRGJywkSSJ6R0YlRicsJEkidEdGJSMiIiZGJzcmIiIhRjVGOCwkRjtGNzcmRj8sJEY1ISIiLCRGOUYqLCRGOyEiJDcmRj8sJEY1I0ZGRicsJEY5RkYsJEY7IyEiKkYnUSI9RiUtRiw2IzcmNyNGNzcjIiIlNyMhIiU3IyEiJw==NigmSSJMRzYiNiMiIiRRJjwtLS0tRiUsJkYjIiIiJkYkNiMiIiNGKi1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM3JjcmSSJ4R0YlLCRJInlHRiUjRidGLSwkSSJ6R0YlRi0sJEkidEdGJSMiIiZGLTcmIiIhRjhGOiwkRj1GJzcmRkFGQUZBRkE3JkZBLCRGOCMhIiRGLSwkRjtGRywkRj0jISIqRi1RIj1GJS1GLzYjNyY3I0YnNyMiIiU3I0ZBNyMhIic=NigmSSJMRzYiNiMiIiVRJjwtLS0tRiUsJkYjIiIiJkYkNiMiIiMjIiIkRi0tSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGM0koX3N5c2xpYkdGJTYjNyY3JkkieEdGJSwkSSJ5R0YlRi4sJEkiekdGJUYtLCRJInRHRiUjIiImRi03JiIiIUY6RjssJEY+Ri83JkZCRkJGQkZCRkRRIj1GJS1GMTYjNyY3I0YvNyNGJzcjRkJGSw==NigmSSJDRzYiNiMiIiRRJjwtLS0+RiUmRiQ2IyIiJS1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YvSShfc3lzbGliR0YlNiM3JjcmSSJ4R0YlLCRJInlHRiUjRiciIiMsJEkidEdGJSMiIiZGOCwkSSJ6R0YlRjg3JiIiIUY2LCRGOkYnRj03JkZARkBGQEZARkJRIj1GJS1GLTYjNyY3I0YnNyNGKzcjRkBGSQ==NiVRZW5Db25jbHVzaW9uOn5Tb3VzfmxhfmNvbmRpdGlvbn5kJ2F2b2lyfmxhfmNvbXBhdGliaWxpdHxkeX5kZXM2IiIiI1E0ZGVybml8Y3lyZXN+fGR5cXVhdGlvbnNGJA==NiMvIiIhRiQ=NiMvIiIhRiQ=NiZRMkVufnByZW5hbnR+YWxvcnN+NiJJInRHRiRJInpHRiRRMWNvbW1lfnBhcmFtfGR5dHJlc0YkNiNRWE9ufmVzdH5kb25jfnJhbWVufGR5fnxbeX5sYX5yZXNvbHV0aW9ufmR1fnN5c3R8Y3ltZX5kZX5DUkFNRVI2Ig==NiZRKS4uLi4uLi4uNiItSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGKEkoX3N5c2xpYkdGJDYjNyQ3IywmSSJ4R0YkIiIiSSJ5R0YkIyIiJCIiIzcjRjBRIj1GJC1GJjYjNyQ3IywoRjJGL0kidEdGJCMhIiZGM0kiekdGJCEiIzcjLCgiIiVGL0Y7ISIkRj5GPw==NigmSSJMRzYiNiMiIiJRJjwtLS0tRiUsJkYjRicmRiQ2IyIiIyMhIiRGLC1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YySShfc3lzbGliR0YlNiM3JDcjSSJ4R0YlNyNJInlHRiVRIj1GJS1GMDYjNyQ3IywoRi5GJ0kidEdGJUYsSSJ6R0YlRic3IywoIiIlRidGQEYuRkEhIiM=Calcul du rangA:=array(1..4,1..4): for i from 1 to 4 do for j from 1 to 4 do A[i,j]:=min(i-1,j-1): od:od:A=evalm(A);NiMvSSJBRzYiLUknbWF0cml4RzYkSSpwcm90ZWN0ZWRHRilJKF9zeXNsaWJHRiU2IzcmNyYiIiFGLkYuRi43JkYuIiIiRjBGMDcmRi5GMCIiI0YyNyZGLkYwRjIiIiQ=Grang(A);NiRRKS4uLi4uLi4uNiItSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGKEkoX3N5c2xpYkdGJDYjNyY3JiIiIUYtRi1GLTcmRi0iIiJGL0YvNyZGLUYvIiIjRjE3JkYtRi9GMSIiJA==NiYmSSJDRzYiNiMiIiJRJjwtLS0+RiUmRiQ2IyIiIy1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YvSShfc3lzbGliR0YlNiM3JjcmIiIhRjRGNEY0NyZGJ0Y0RidGJzcmRidGNEYrRis3JkYnRjRGKyIiJA==NiYmSSJMRzYiNiMiIiNRJjwtLS0+RiUmRiQ2IyIiIi1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YvSShfc3lzbGliR0YlNiM3JjcmRisiIiFGK0YrNyZGNEY0RjRGNDcmRitGNEYnRic3JkYrRjRGJyIiJA==NiYmSSJMRzYiNiMiIiRRJjwtLS0tRiUsJkYjIiIiJkYkNiNGKiEiIi1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM3JjcmRioiIiFGKkYqNyZGNkY2RjZGNjcmRjZGNkYqRio3JkYqRjYiIiNGJw==NiYmSSJMRzYiNiMiIiVRJjwtLS0tRiUsJkYjIiIiJkYkNiNGKiEiIi1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM3JjcmRioiIiFGKkYqNyZGNkY2RjZGNjcmRjZGNkYqRio3JkY2RjZGKiIiIw==NiYmSSJDRzYiNiMiIiNRJjwtLS0+RiUmRiQ2IyIiJC1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YvSShfc3lzbGliR0YlNiM3JjcmIiIiRjQiIiFGNDcmRjVGNUY1RjU3JkY1RjRGNUY0NyZGNUY0RjVGJw==NiYmSSJMRzYiNiMiIiRRJjwtLS0+RiUmRiQ2IyIiIy1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YvSShfc3lzbGliR0YlNiM3JjcmIiIiRjQiIiFGNDcmRjVGNEY1RjQ3JkY1RjVGNUY1NyZGNUY0RjVGKw==NiYmSSJMRzYiNiMiIiVRJjwtLS0tRiUsJkYjIiIiJkYkNiMiIiMhIiItSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGMkkoX3N5c2xpYkdGJTYjNyY3JkYqRioiIiFGKjcmRjdGKkY3Rio3JkY3RjdGN0Y3NyZGN0Y3RjdGKg==NiYmSSJDRzYiNiMiIiRRJjwtLS0+RiUmRiQ2IyIiJS1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YvSShfc3lzbGliR0YlNiM3JjcmIiIiRjRGNCIiITcmRjVGNEY0RjU3JkY1RjVGNUY1NyZGNUY1RjRGNQ==NiYmSSJMRzYiNiMiIiVRJjwtLS0+RiUmRiQ2IyIiJC1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YvSShfc3lzbGliR0YlNiM3JjcmIiIiRjRGNCIiITcmRjVGNEY0RjU3JkY1RjVGNEY1NyZGNUY1RjVGNQ==R\351solution d'un syst\350me de CRAMERA:=array(1..4,1..4): for i from 1 to 4 do for j from 1 to 4 do A[i,j]:=min(i,j): od:od:A=evalm(A);NiMvSSJBRzYiLUknbWF0cml4RzYkSSpwcm90ZWN0ZWRHRilJKF9zeXNsaWJHRiU2IzcmNyYiIiJGLkYuRi43JkYuIiIjRjBGMDcmRi5GMCIiJEYyNyZGLkYwRjIiIiU=Gsyst_cramer(A,[x1,x2,x3,x4],[y1,y2,y3,y4]);NiZRKS4uLi4uLi4uNiItSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGKEkoX3N5c2xpYkdGJDYjNyY3IywqSSN4MUdGJCIiIkkjeDJHRiRGL0kjeDNHRiRGL0kjeDRHRiRGLzcjLCpGLkYvRjAiIiNGMUY1RjJGNTcjLCpGLkYvRjBGNUYxIiIkRjJGODcjLCpGLkYvRjBGNUYxRjhGMiIiJVEiPUYkLUYmNiM3JjcjSSN5MUdGJDcjSSN5MkdGJDcjSSN5M0dGJDcjSSN5NEdGJA==NigmSSJMRzYiNiMiIiNRJjwtLS0tRiUsJkYjIiIiJkYkNiNGKiEiIi1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM3JjcjLCpJI3gxR0YlRipJI3gyR0YlRipJI3gzR0YlRipJI3g0R0YlRio3IywoRjhGKkY5RipGOkYqNyMsKkY3RipGOEYnRjkiIiRGOkY/NyMsKkY3RipGOEYnRjlGP0Y6IiIlUSI9RiUtRi82IzcmNyNJI3kxR0YlNyMsJkkjeTJHRiVGKkZIRi03I0kjeTNHRiU3I0kjeTRHRiU=NigmSSJMRzYiNiMiIiRRJjwtLS0tRiUsJkYjIiIiJkYkNiNGKiEiIi1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM3JjcjLCpJI3gxR0YlRipJI3gyR0YlRipJI3gzR0YlRipJI3g0R0YlRio3IywoRjhGKkY5RipGOkYqNyMsKEY4RipGOSIiI0Y6Rj83IywqRjdGKkY4Rj9GOUYnRjoiIiVRIj1GJS1GLzYjNyY3I0kjeTFHRiU3IywmSSN5MkdGJUYqRkhGLTcjLCZJI3kzR0YlRipGSEYtNyNJI3k0R0YlNigmSSJMRzYiNiMiIiVRJjwtLS0tRiUsJkYjIiIiJkYkNiNGKiEiIi1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM3JjcjLCpJI3gxR0YlRipJI3gyR0YlRipJI3gzR0YlRipJI3g0R0YlRio3IywoRjhGKkY5RipGOkYqNyMsKEY4RipGOSIiI0Y6Rj83IywoRjhGKkY5Rj9GOiIiJFEiPUYlLUYvNiM3JjcjSSN5MUdGJTcjLCZJI3kyR0YlRipGSEYtNyMsJkkjeTNHRiVGKkZIRi03IywmSSN5NEdGJUYqRkhGLQ==NigmSSJMRzYiNiMiIiRRJjwtLS0tRiUsJkYjIiIiJkYkNiMiIiMhIiItSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGMkkoX3N5c2xpYkdGJTYjNyY3IywqSSN4MUdGJUYqSSN4MkdGJUYqSSN4M0dGJUYqSSN4NEdGJUYqNyMsKEY5RipGOkYqRjtGKjcjLCZGOkYqRjtGKjcjLChGOUYqRjpGLUY7RidRIj1GJS1GMDYjNyY3I0kjeTFHRiU3IywmSSN5MkdGJUYqRkdGLjcjLCZJI3kzR0YlRipGSkYuNyMsJkkjeTRHRiVGKkZHRi4=NigmSSJMRzYiNiMiIiVRJjwtLS0tRiUsJkYjIiIiJkYkNiMiIiMhIiItSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGMkkoX3N5c2xpYkdGJTYjNyY3IywqSSN4MUdGJUYqSSN4MkdGJUYqSSN4M0dGJUYqSSN4NEdGJUYqNyMsKEY5RipGOkYqRjtGKjcjLCZGOkYqRjtGKjcjLCZGOkYqRjtGLVEiPUYlLUYwNiM3JjcjSSN5MUdGJTcjLCZJI3kyR0YlRipGR0YuNyMsJkkjeTNHRiVGKkZKRi43IywmSSN5NEdGJUYqRkpGLg==NigmSSJMRzYiNiMiIiVRJjwtLS0tRiUsJkYjIiIiJkYkNiMiIiQhIiItSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGMkkoX3N5c2xpYkdGJTYjNyY3IywqSSN4MUdGJUYqSSN4MkdGJUYqSSN4M0dGJUYqSSN4NEdGJUYqNyMsKEY5RipGOkYqRjtGKjcjLCZGOkYqRjtGKjcjRjtRIj1GJS1GMDYjNyY3I0kjeTFHRiU3IywmSSN5MkdGJUYqRkZGLjcjLCZJI3kzR0YlRipGSUYuNyMsJkkjeTRHRiVGKkZMRi4=NigmSSJMRzYiNiMiIiJRJjwtLS0tRiUsJkYjRicmRiQ2IyIiJSEiIi1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM3JjcjLChJI3gxR0YlRidJI3gyR0YlRidJI3gzR0YlRic3IywoRjhGJ0Y5RidJI3g0R0YlRic3IywmRjlGJ0Y8Ric3I0Y8USI9RiUtRi82IzcmNyMsKEkjeTFHRiVGJ0kjeTRHRiVGLUkjeTNHRiVGJzcjLCZJI3kyR0YlRidGRkYtNyMsJkZIRidGS0YtNyMsJkZHRidGSEYtNigmSSJMRzYiNiMiIiNRJjwtLS0tRiUsJkYjIiIiJkYkNiMiIiUhIiItSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGMkkoX3N5c2xpYkdGJTYjNyY3IywoSSN4MUdGJUYqSSN4MkdGJUYqSSN4M0dGJUYqNyMsJkY5RipGOkYqNyMsJkY6RipJI3g0R0YlRio3I0Y/USI9RiUtRjA2IzcmNyMsKEkjeTFHRiVGKkkjeTRHRiVGLkkjeTNHRiVGKjcjLCpJI3kyR0YlRipGR0YuRkhGLkZJRio3IywmRklGKkZMRi43IywmRkhGKkZJRi4=NigmSSJMRzYiNiMiIiRRJjwtLS0tRiUsJkYjIiIiJkYkNiMiIiUhIiItSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGMkkoX3N5c2xpYkdGJTYjNyY3IywoSSN4MUdGJUYqSSN4MkdGJUYqSSN4M0dGJUYqNyMsJkY5RipGOkYqNyNGOjcjSSN4NEdGJVEiPUYlLUYwNiM3JjcjLChJI3kxR0YlRipJI3k0R0YlRi5JI3kzR0YlRio3IywqSSN5MkdGJUYqRkZGLkZHRi5GSEYqNyMsKEZIIiIjRktGLkZHRi43IywmRkdGKkZIRi4=NigmSSJMRzYiNiMiIiJRJjwtLS0tRiUsJkYjRicmRiQ2IyIiJCEiIi1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM3JjcjLCZJI3gxR0YlRidJI3gyR0YlRic3IywmRjhGJ0kjeDNHRiVGJzcjRjs3I0kjeDRHRiVRIj1GJS1GLzYjNyY3IywoSSN5MUdGJUYnSSN5M0dGJUYtSSN5MkdGJUYnNyMsKkZHRidGRUYtSSN5NEdGJUYtRkZGJzcjLChGRiIiI0ZHRi1GSkYtNyMsJkZKRidGRkYtNigmSSJMRzYiNiMiIiNRJjwtLS0tRiUsJkYjIiIiJkYkNiMiIiQhIiItSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGMkkoX3N5c2xpYkdGJTYjNyY3IywmSSN4MUdGJUYqSSN4MkdGJUYqNyNGOTcjSSN4M0dGJTcjSSN4NEdGJVEiPUYlLUYwNiM3JjcjLChJI3kxR0YlRipJI3kzR0YlRi5JI3kyR0YlRio3IywoRkdGJ0ZFRi5GRkYuNyMsKEZGRidGR0YuSSN5NEdGJUYuNyMsJkZMRipGRkYuNigmSSJMRzYiNiMiIiJRJjwtLS0tRiUsJkYjRicmRiQ2IyIiIyEiIi1JJ21hdHJpeEc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM3JjcjSSN4MUdGJTcjSSN4MkdGJTcjSSN4M0dGJTcjSSN4NEdGJVEiPUYlLUYvNiM3JjcjLCZJI3kxR0YlRixJI3kyR0YlRi03IywoRkRGLEZDRi1JI3kzR0YlRi03IywoRkdGLEZERi1JI3k0R0YlRi03IywmRkpGJ0ZHRi0=Calcul de l'inverse d'une matriceGinverse(A);NiUtSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIkYsRixGLDcmRiwiIiNGLkYuNyZGLEYuIiIkRjA3JkYsRi5GMCIiJVEpLi4uLi4uLi5GKC1GJDYjNyY3JkYsIiIhRjhGODcmRjhGLEY4Rjg3JkY4RjhGLEY4NyZGOEY4RjhGLA==NictSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIkYsRixGLDcmIiIhRixGLEYsNyZGLCIiIyIiJEYxNyZGLEYwRjEiIiUmSSJMR0YoNiNGMFEmPC0tLS1GKCwmRjRGLCZGNTYjRiwhIiItRiQ2IzcmNyZGLEYuRi5GLjcmRjtGLEYuRi43JkYuRi5GLEYuNyZGLkYuRi5GLA==NictSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIkYsRixGLDcmIiIhRixGLEYsNyZGLkYsIiIjRjA3JkYsRjAiIiQiIiUmSSJMR0YoNiNGMlEmPC0tLS1GKCwmRjRGLCZGNTYjRiwhIiItRiQ2IzcmNyZGLEYuRi5GLjcmRjtGLEYuRi43JkY7Ri5GLEYuNyZGLkYuRi5GLA==NictSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIkYsRixGLDcmIiIhRixGLEYsNyZGLkYsIiIjRjA3JkYuRixGMCIiJCZJIkxHRig2IyIiJVEmPC0tLS1GKCwmRjNGLCZGNDYjRiwhIiItRiQ2IzcmNyZGLEYuRi5GLjcmRjtGLEYuRi43JkY7Ri5GLEYuNyZGO0YuRi5GLA==NictSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIkYsRixGLDcmIiIhRixGLEYsNyZGLkYuRixGLDcmRi5GLCIiIyIiJCZJIkxHRig2I0YyUSY8LS0tLUYoLCZGM0YsJkY0NiNGMSEiIi1GJDYjNyY3JkYsRi5GLkYuNyZGOkYsRi5GLjcmRi5GOkYsRi43JkY6Ri5GLkYsNictSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIkYsRixGLDcmIiIhRixGLEYsNyZGLkYuRixGLDcmRi5GLkYsIiIjJkkiTEdGKDYjIiIlUSY8LS0tLUYoLCZGMkYsJkYzNiNGMSEiIi1GJDYjNyY3JkYsRi5GLkYuNyZGOkYsRi5GLjcmRi5GOkYsRi43JkYuRjpGLkYsNictSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIkYsRixGLDcmIiIhRixGLEYsNyZGLkYuRixGLDcmRi5GLkYuRiwmSSJMR0YoNiMiIiVRJjwtLS0tRigsJkYxRiwmRjI2IyIiJCEiIi1GJDYjNyY3JkYsRi5GLkYuNyZGOkYsRi5GLjcmRi5GOkYsRi43JkYuRi5GOkYsNictSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIkYsRiwiIiE3JkYtRixGLEYsNyZGLUYtRixGLDcmRi1GLUYtRiwmSSJMR0YoNiNGLFEmPC0tLS1GKCwmRjFGLCZGMjYjIiIlISIiLUYkNiM3JjcmRixGLUYsRjk3JkY5RixGLUYtNyZGLUY5RixGLTcmRi1GLUY5Riw=NictSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIkYsRiwiIiE3JkYtRixGLEYtNyZGLUYtRixGLDcmRi1GLUYtRiwmSSJMR0YoNiMiIiNRJjwtLS0tRigsJkYxRiwmRjI2IyIiJSEiIi1GJDYjNyY3JkYsRi1GLEY6NyZGOkYsRixGOjcmRi1GOkYsRi03JkYtRi1GOkYsNictSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIkYsRiwiIiE3JkYtRixGLEYtNyZGLUYtRixGLTcmRi1GLUYtRiwmSSJMR0YoNiMiIiRRJjwtLS0tRigsJkYxRiwmRjI2IyIiJSEiIi1GJDYjNyY3JkYsRi1GLEY6NyZGOkYsRixGOjcmRi1GOiIiI0Y6NyZGLUYtRjpGLA==NictSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIkYsIiIhRi03JkYtRixGLEYtNyZGLUYtRixGLTcmRi1GLUYtRiwmSSJMR0YoNiNGLFEmPC0tLS1GKCwmRjFGLCZGMjYjIiIkISIiLUYkNiM3JjcmRixGLEY5Ri03JkY5RixGLEY5NyZGLUY5IiIjRjk3JkYtRi1GOUYsNictSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIkYsIiIhRi03JkYtRixGLUYtNyZGLUYtRixGLTcmRi1GLUYtRiwmSSJMR0YoNiMiIiNRJjwtLS0tRigsJkYxRiwmRjI2IyIiJCEiIi1GJDYjNyY3JkYsRixGOkYtNyZGOkY0RjpGLTcmRi1GOkY0Rjo3JkYtRi1GOkYsNictSSdtYXRyaXhHNiRJKnByb3RlY3RlZEdGJkkoX3N5c2xpYkc2IjYjNyY3JiIiIiIiIUYtRi03JkYtRixGLUYtNyZGLUYtRixGLTcmRi1GLUYtRiwmSSJMR0YoNiNGLFEmPC0tLS1GKCwmRjFGLCZGMjYjIiIjISIiLUYkNiM3JjcmRjhGOUYtRi03JkY5RjhGOUYtNyZGLUY5RjhGOTcmRi1GLUY5Riw=