restart; EDO:=m*diff(x(t),t$2)=-a*x(t); NiM+SSRFRE9HNiIvKiZJIm1HRiUiIiItSSVkaWZmR0kqcHJvdGVjdGVkR0YsNiQtSSJ4R0YlNiNJInRHRiUtSSIkR0YsNiRGMSIiI0YpLCQqJkkiYUdGJUYpRi5GKSEiIg== assume(m,positive); assume(a,positive);sol_stab:=rhs(dsolve({EDO,x(0)=x_0,D(x)(0)=0},x(t))); NiM+SSlzb2xfc3RhYkc2IiomSSR4XzBHRiUiIiItSSRjb3NHNiRJKnByb3RlY3RlZEdGLEkoX3N5c2xpYkdGJTYjKigqJkkjYXxpckdGJUYoSSNtfGlyR0YlRigjRigiIiNGMiEiIkkidEdGJUYoRig= assume(a<0);sol_instab:=rhs(dsolve({EDO,x(0)=x_0,D(x)(0)=0},x(t))); NiM+SStzb2xfaW5zdGFiRzYiLCYqJkkkeF8wR0YlIiIiLUkkZXhwRzYkSSpwcm90ZWN0ZWRHRi1JKF9zeXNsaWJHRiU2IyooLCQqJkkjYXxpckdGJUYpSSNtfGlyR0YlRikhIiIjRikiIiNGNEY1SSJ0R0YlRilGKUY2KiZGKEYpLUYrNiMsJEYwRjVGKUY2 #Remarquez que la solution n'est rien d'autre que la transcription de la solution stable en remplacant cos par ch. assume(a=0);sol_indif:=rhs(dsolve({EDO,x(0)=x_0,D(x)(0)=0},x(t))); NiM+SSpzb2xfaW5kaWZHNiJJJHhfMEdGJQ== #Tracons les courbes associ\351es m:=1;x_0:=1; NiM+SSJtRzYiIiIi NiM+SSR4XzBHNiIiIiI= a:=1;y_stab:=rhs(dsolve({EDO,x(0)=x_0,D(x)(0)=0},x(t))); NiM+SSJhRzYiIiIi NiM+SSd5X3N0YWJHNiItSSRjb3NHNiRJKnByb3RlY3RlZEdGKUkoX3N5c2xpYkdGJTYjSSJ0R0Yl a:=-0.1;y_instab:=rhs(dsolve({EDO,x(0)=x_0,D(x)(0)=0},x(t))); NiM+SSJhRzYiJCEiIkYn NiM+SSl5X2luc3RhYkc2IiwmLUkkZXhwRzYkSSpwcm90ZWN0ZWRHRipJKF9zeXNsaWJHRiU2IywkKiYiIzUjIiIiIiIjSSJ0R0YlRjEjRjFGL0YwLUYoNiMsJEYuIyEiIkYvRjA= a:=0;y_indif:=rhs(dsolve({EDO,x(0)=x_0,D(x)(0)=0},x(t))); NiM+SSJhRzYiIiIh NiM+SSh5X2luZGlmRzYiIiIi plot([y_stab,y_instab,y_indif],t=0..10,color=[red,black,blue]); LSUlUExPVEc2Jy0lJ0NVUlZFU0c2JDdocDckJCIiIUYrJCIiIkYrNyQkIjNXbW1tVCYpR1xhISM+JCIzPU1lITRJY14pKiohIz03JCQiM0dMTEwzeCYpKjMiRjQkIjNzJipRcXEjcDElKipGNDckJCIzJCoqKioqXGlseU07RjQkIjNvbkAiKXo0bm0pKkY0NyQkIjNlbW1tO2FyekBGNCQiMzFXTCEqNDZRaigqRjQ3JCQiM3YqKipcN3klKno3JEY0JCIzQT8lekVNZVpeKkY0NyQkIjNbTEwkZTl1aTIlRjQkIjNjbVQpSHZSMT0qRjQ3JCQiM25tbW0iel8iNGlGNCQiMzt2a15rSVlMIilGNDckJCIzOW9tbVQmcGhOKUY0JCIzMUtAIikqMy1zcSdGNDckJCIzS0xMZSo9KUhcNSEjPCQiM0MkXDMnPnB6IilcRjQ3JCQiMy0rK3Y9Sk5bNkZlbiQiM289P3ErNSEqKjQlRjQ3JCQiM3NtbSJ6LzN1QyJGZW4kIjMrdDMsSi0ieTwkRjQ3JCQiM1VMTGUqb3QqXDhGZW4kIjNxPkwwKGVCLj4jRjQ3JCQiMyEqKioqXDdMUkRYIkZlbiQiM1NaNlZrYiIpejZGNDckJCIzW0xMZWtHaGU6RmVuJCIzLFlUOiEzOyQ9N0YxNyQkIjMlb207elInb2s7RmVuJCEzOzZ3QU0nPV9QKkYxNyQkIjNPTEwzXyg+L3giRmVuJCEzVyc+JUclWy1JKT5GNDckJCIzMysrRDFKOnc9RmVuJCEzPltqJjNwTWorJEY0NyQkIjMrbjtIZEciXCk+RmVuJCEzQT08InkmSCJRLSVGNDckJCIzb0xMTDNFbiQ0I0ZlbiQhMzkzNVg4PHUkKlxGNDckJCIzXysrRGMjbyUqPSNGZW4kITN5KjRKV2dQJip6JkY0NyQkIjMjcG1tVCFSRSZHI0ZlbiQhMykpUSpHMSZIOl9sRjQ3JCQiM0QrKytELiY0XSNGZW4kITN6eENRbio+ciwpRjQ3JCQiMzsrKyt2Ql88RkZlbiQhMypcK1toI29AOSIqRjQ3JCQiMyEqKioqKipcLXc9I0dGZW4kITNNdGpSIj5YS1wqRjQ3JCQiMzMrKyt2J0hpI0hGZW4kITNNVyopKkgqKSkpKm8oKkY0NyQkIjMhcDtIMkI2TyhIRmVuJCEzdTZDVWpFQ2YpKkY0NyQkIjNwTCRla3kjKjQtJEZlbiQhM1NlUDhla09GKipGNDckJCIzLyt2PVVWUG9JRmVuJCEzIVFxPXFPMksoKipGNDckJCIzJm9tO3oqZXY6SkZlbiQhM2tbbyVmXGltKioqRjQ3JCQiM19MM19dcjRzSkZlbiQhM28uXzVSeE0mKioqRjQ3JCQiMz4rXTcuJVElR0tGZW4kITMlKkhKKFt4N0InKipGNDckJCIzJ287SGRselpHJEZlbiQhM1crXGhSQ20oKikqRjQ3JCQiM19MTEwzNDdUTEZlbiQhM2QiMyUpNCE+ZywpKkY0NyQkIjMjUUxMM3h4bFYkRmVuJCEzNUBWRCNwayFvJipGNDckJCIzbkxMTExZLktORmVuJCEzK2opZSVSJDR1QypGNDckJCIzMysrRCJvN1R2JEZlbiQhMyNwTmkjXHgsIz0pRjQ3JCQiMz9MTEwkUSpvXVJGZW4kITMmPVRZa3lCOiFwRjQ3JCQiM20rK0QiPWxqOyVGZW4kITNvcT1Rc0gkSD4mRjQ3JCQiMzMrK11pQjBwVUZlbiQhM2tKVl4hKiplJipHJUY0NyQkIjNTKyt2ViZSPFAlRmVuJCEzalcsKT0iRyo0TSRGNDckJCIzS247eldHKSl5V0ZlbiQhM1wtQiRvQCoqUUojRjQ3JCQiM0NNTCRlOUVnZSVGZW4kITNnIkchXCU9by1FIkY0NyQkIjMnUUwzRjk8V28lRmVuJCEzKVt2IjQ9IT5veiNGMTckJCIzXUxMZVIiM0d5JUZlbiQiM0R5dyllUSg0T3FGMTckJCIzLytdKD03TyopKVtGZW4kIjMzSzUlKilSOWp2IkY0NyQkIjNlbW07L1QxJipcRmVuJCIzS2IjcCIqKWZEKnkjRjQ3JCQiM1ZtOy9eN0kwXkZlbiQiM0tLSCNlJVEhKUdRRjQ3JCQiMz1ubSJ6UlFiQCZGZW4kIjMqRyMpR0ZJcT0jW0Y0NyQkIjNuTExMZSxdNmBGZW4kIjMlM11BJ1JuM1JjRjQ3JCQiMzorK3Y9PlkyYUZlbiQiM24mXCI0JWU5V1MnRjQ3JCQiM1pubTt6WHU5Y0ZlbiQiMyNvLiV5JykqKil5JXlGNDckJCIzNCsrK115KSlHZUZlbiQiM2s/JTNkWiZwJikqKUY0NyQkIjNrKytEY2xqTGZGZW4kIjMlW20oPSZcdF9SKkY0NyQkIjNIKytdaV9RUWdGZW4kIjNTYChlKzFlPXEqRjQ3JCQiMyEzXSg9VSwxKjMnRmVuJCIzUE9WZ3khb0AiKSpGNDckJCIzVStdKD0tTihSaEZlbiQiMz9PRj0nUidHKCopKkY0NyQkIjMtK0RjLCo0Lz4nRmVuJCIzeT0uYSFbJSpwJioqRjQ3JCQiM2IrK0QieSUzVGlGZW4kIjNLLkRdUCFSNioqKkY0NyQkIjNTK0RKJmZddEgnRmVuJCIzOUJsJClSbioqKSoqKkY0NyQkIjNHK11QNGtoYGpGZW4kIjNpXT5VXXY/dioqRjQ3JCQiMzkrdlZCQSkpNGtGZW4kIjNYWkc/aW4lKT4qKkY0NyQkIjMrKytdUCFbaFknRmVuJCIzUWFfVyNmKjNMKSpGNDckJCIzS21tVDVGRW5sRmVuJCIzL3VPXSJSMSMqZipGNDckJCIzaUtMTCRReCRvbUZlbiQiM1tdJEdpemlzRSpGNDckJCIzWSsrK3YuSSUpb0ZlbiQiM3NldCdHKFswWiMpRjQ3JCQiMz9tbSJ6cGUqenFGZW4kIjMrU1VLa3E8ISpwRjQ3JCQiMzssKytEXCdRSChGZW4kIjMlUV0ieWwyJkdKJkY0NyQkIjNnbTt6cCUqXCVSKEZlbiQiM2B3dSZRUlNbViVGNDckJCIzJUhMJGU5UzgmXChGZW4kIjNFZGRiLVwmPl4kRjQ3JCQiMyVvbTsvNkUuZyhGZW4kIjM2RiIpUjA9VzRERjQ3JCQiM3MrK0QxIz1icShGZW4kIjMlPUswVlEnPXo5RjQ3JCQiMyNvbSJIMkZPM3lGZW4kIjNfZzB0XTBKZ1hGMTckJCIzIkhMTCQzcz82ekZlbiQhMyFmITNcMllWPmRGMTckJCIzeWw7enBlKCk9ISlGZW4kITNVeXRTQitbVDtGNDckJCIzYSoqKlw3YFdsNylGZW4kITNjY3MleS4xP3AjRjQ3JCQiM2NMJGUqW0FDSSMpRmVuJCEzV1E6JmZcX1duJEY0NyQkIjNlbm1tbSpSUkwpRmVuJCEzNEk6XWtAVTxZRjQ3JCQiMyV6bW1UdkpnYSlGZW4kITNvXXRpLypwNlEnRjQ3JCQiM11NTGU5dE9jKClGZW4kITN5QyR5Iz5rMlt5RjQ3JCQiMzEsKytdUWtcKilGZW4kITNbIWZdaHo4QiopKUY0NyQkIjMjKW9tVDVBU2chKkZlbiQhM1wwOjhZU1lWJCpGNDckJCIzIVtMTDNkZzY8KkZlbiQhM3c4Wj94NzYhbypGNDckJCIzSywrdm9UQXEjKkZlbiQhM0UqKSlwLz0uMykpKkY0NyQkIjMleW1tbXcoR3AkKkZlbiQhMzlPPiE+OTNZKSoqRjQ3JCQiMyU0XTdgKiopNEElKkZlbiQhMzttPXU6VCcqKioqKkY0NyQkIjMvTSRlUkE1XFoqRmVuJCEzZz8kW0RUT3UpKipGNDckJCIzOW5UZ185c0YmKkZlbiQhM0NPJypHaypmcSUqKkY0NyQkIjNDKytEIm9LMGUqRmVuJCEzKT02YWROWip5KSpGNDckJCIzbSsrK11vaSJvKkZlbiQhM0UjPiQ0I29fPm4qRjQ3JCQiMzUsK3Y9NXMjeSpGZW4kITNDLCFlJTRYPm0kKkY0NyQkIiM1RiskITNRQ1h3IUg6MlIpRjQtJSZDT0xPUkc2JiUkUkdCRyRGX2hsISIiJEYrRmdobEZoaGwtRiY2JDdTRik3JEZAJCIzJik0NE8/bFAtNUZlbjckRkokIjNkXl9sOiY+JDM1RmVuNyRGTyQiM3pEVEYsKVEkPjVGZW43JEZUJCIzXHJPYjNrNk41RmVuNyRGWSQiMyF5YDgtSWViMCJGZW43JEZebyQiM11dbGFJYSIpeTVGZW43JEZobyQiM1wkKVFUTDlPMjZGZW43JEZicCQiM2AoKipSPl4peVQ2RmVuNyRGXHEkIjMxcTNGKzVBIj0iRmVuNyRGZnEkIjMnKikqUkEvdEhGN0ZlbjckRmByJCIzUWhcMTtgb3M3RmVuNyRGZXIkIjMmR1MqKjQ2I1FIOEZlbjckRmpyJCIzUU0yOUVxYCNSIkZlbjckRmRzJCIzOXQtYmNzZGY5RmVuNyRGaHQkIjMnb3Y1aDBlZl8iRmVuNyRGXHYkIjNOcDEsTCNbP2giRmVuNyRGZnYkIjN5diVcUHZuOHAiRmVuNyRGW3ckIjNnNiNwSilbVCJ6IkZlbjckRmB3JCIzWSpmLz5ISnQpPUZlbjckRmV3JCIzamUzMz9YKDQrI0ZlbjckRl94JCIzd2NKdjdqJHk2I0ZlbjckRml4JCIzJUdMJik+TC4kXEFGZW43JEZjeSQiM2tpWnMibzsiekJGZW43JEZdeiQiM1A6PWVlWVtIREZlbjckRmd6JCIzL1dOP0xhdihwI0ZlbjckRmFbbCQiMztWOWNKZSlbJkdGZW43JEZmW2wkIjNyN24qUXFDay4kRmVuNyRGW1xsJCIzVnFPKFJ1KG9QS0ZlbjckRmVcbCQiMyFRZz9nYV0qW01GZW43JEZpXWwkIjNbQ11BWTx3bk9GZW43JEZdX2wkIjMyI0giZnNsVEdSRmVuNyRGZ19sJCIzISp5JG9hWG0melRGZW43JEZcYGwkIjNHJFE6a0hDbVklRmVuNyRGYWBsJCIzbiVHYTEsJnBXWkZlbjckRmZgbCQiM1leamQ2KkgmcF1GZW43JEZgYWwkIjMtUChRcD1OalImRmVuNyRGamFsJCIzKyN6dUV4UTh3JkZlbjckRmRibCQiMyQpcFBxQG0lRzknRmVuNyRGXmNsJCIzP254LihlTSxkJ0ZlbjckRmhjbCQiM2FdcFUncF4vLChGZW43JEZdZGwkIjNhSHNoJj1fPlwoRmVuNyRGYmRsJCIzcyJvWzhWYkYrKUZlbjckRmdkbCQiMycpej52XSgqSC4mKUZlbjckRmFlbCQiM1FZTENuYTw7IipGZW43JEZbZmwkIjNdOHlXKT1kQHEqRmVuNyRGX2dsJCIzMl04eVFmKm8uIiEjOzckRmlnbCQiM11kUm5AJ1tdNSJGZmFtNyRGXmhsJCIzOV4/MzJPTCQ9IkZmYW0tRmNobDYmRmVobEZoaGxGaGhsRmhobC1GJjYkN1NGKTckRkBGLDckRkpGLDckRk9GLDckRlRGLDckRllGLDckRl5vRiw3JEZob0YsNyRGYnBGLDckRlxxRiw3JEZmcUYsNyRGYHJGLDckRmVyRiw3JEZqckYsNyRGZHNGLDckRmh0Riw3JEZcdkYsNyRGZnZGLDckRlt3Riw3JEZgd0YsNyRGZXdGLDckRl94Riw3JEZpeEYsNyRGY3lGLDckRl16Riw3JEZnekYsNyRGYVtsRiw3JEZmW2xGLDckRltcbEYsNyRGZVxsRiw3JEZpXWxGLDckRl1fbEYsNyRGZ19sRiw3JEZcYGxGLDckRmFgbEYsNyRGZmBsRiw3JEZgYWxGLDckRmphbEYsNyRGZGJsRiw3JEZeY2xGLDckRmhjbEYsNyRGXWRsRiw3JEZiZGxGLDckRmdkbEYsNyRGYWVsRiw3JEZbZmxGLDckRl9nbEYsNyRGaWdsRiw3JEZeaGxGLC1GY2hsNiZGZWhsRmhobEZoaGxGZmhsLSUrQVhFU0xBQkVMU0c2JFEidDYiUSFGaGVtLSUlVklFV0c2JDtGaGhsRl5obDskITIzM0E3MWptRCJGZmFtJCIyMSVvL3MtKzQ3ISM6