Exercice 1On d\351fnit la param\351trisation, puis on construit le support partiel et sir la totalit\351 des param\350tresrestart;x:=t->(cos(t))^3;y:=t->(sin(t))^3;NiM+SSJ4RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiQtSSRjb3NHRiU2IzkkIiIkRiVGJUYlNiM+SSJ5RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiQtSSRzaW5HRiU2IzkkIiIkRiVGJUYltotal:=[x(t),y(t),t=0..2*Pi]: partiel:=[x(t),y(t),t=0..Pi/4]:plot([total,partiel],color=[blue,red],thickness=[1,2]);LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JTdpbjckJCIiIiIiISRGLEYsNyQkIjNKJGZNS0o0PHMqISM9JCIzPjJMKyNSZFthIyEjPzckJCIza0Y6ZUUyKUgwKkYxJCIzVjJlSC87dkQ7ISM+NyQkIjNRTVtOc00hNCJ6RjEkIjNsOVV5ZVxvK2JGOjckJCIzc2hjOzc+L3prRjEkIjN3a09ybClRJGY3RjE3JCQiM2JJJUhvT2IkUVxGMSQiMyNvaSllWjdcKUgjRjE3JCQiM1sjZTc9YUBHYiRGMSQiMzNUckYsV0Y9TkYxNyQkIjNDXnUuXCJIIylHI0YxJCIzIWVvcGIuODsmXEYxNyQkIjNnOkFwJDMnNGU3RjEkIjN1XmQ4SXk9IlsnRjE3JCQiM1FmamhaIjNcZCZGOiQiM28mUj5ucStIKnlGMTckJCIzeHBAQl5VZTU7RjokIjM3XnFpMEJ5ZSEqRjE3JCQiMyMpZU04WjcpUVYjRjQkIjMvYjxyIVtBKUgoKkYxNyQkIjNxQGwtKmZ5Ri0kISNAJCIzblVUcEFfXksqKkYxNyQkITNOUnNFbWQhKkdAISNGJCIyQU1cPmwlKioqKioqISM8NyQkITMxJW9RUy1jY0EkRmVvJCIzJ2YwaUgrSyZIKipGMTckJCEzUicqUmxyX0RIREY0JCIzZCVvW1NkVUdzKkYxNyQkITNrJykzZ0YzJEgmPUY6JCIzK3JNIjNTbCNvKilGMTckJCEzcT0hSERKSTpQJkY6JCIzJ1twOidwcVhVekYxNyQkITNbcFJFK2UrI0ciRjEkIjMhcCx2IVFxMVNrRjE3JCQhMzpWbENEX041PEYxJCIzJXoybUkjRyhcdiZGMTckJCEzJjNjV2MlKkhIPyNGMSQiMy02YC41VDBqXUYxNyQkITNnXEZjISl5VlxHRjEkIjMzMXU9IXpxI3BVRjE3JCQhMyFbSEs0VHhIYyRGMSQiM050KmVgQWgiM05GMTckJCEzYiw+RCk0dHVCJUYxJCIzY3NTc2JoSXhHRjE3JCQhM2A3ZSZRc2wjUVxGMSQiM00iZnYhPjJjKUgjRjE3JCQhMytWRCU0TWZJXCdGMSQiMyUqM2MhM3JJN0QiRjE3JCQhMyEqKVFedSN5cGx5RjEkIjM3UDxsQXd6KG8mRjo3JCQhMyYpWzs3a1lWQyEqRjEkIjM2SF4iKjNhNiw8Rjo3JCQhM2VQV2xaXW5CKCpGMSQiM2VscTIwXSJ5XiNGNDckJCEzJ0gmejFxNjtGKipGMSQiMzNjTUshNDErUiRGZW83JCQhMzElZlYmR2QmKSoqKipGMSQiMzdiPUIrbihHKUghI0Q3JCQhMzNrRUBoW11NKipGMSQhM2l3QTk0WCUqKilHRmVvNyQkITN1JnkxKmU5I3lzKkYxJCEzcWpWPSUqZjRoQ0Y0NyQkITNtcXdkWSxzYCEqRjEkITNxcCwoem86UWkiRjo3JCQhMytARSZbX0EnW3pGMSQhM08oKiplaWBMa00mRjo3JCQhMzQtNCsoPillRWxGMSQhMydHKj04TjQkPkIiRjE3JCQhM2x5JDRtallyLCZGMSQhMzgicCcpNDFoeUIjRjE3JCQhMz1XdilcQ2xGSCVGMSQhM00pKik0YzxcKkdHRjE3JCQhM0UhZnJ2bDdeZiRGMSQhM1VSIjNkJnpHd01GMTckJCEzWzdAU1swIilwR0YxJCEzU1huN213K1lVRjE3JCQhM2dUSSpvUyoqR0AjRjEkITNFJWVIYzk4KlxdRjE3JCQhMz9FJip5SlImPXAiRjEkITN5SSEqRyJHcEZ5JkYxNyQkITMhKik+XTlKSElDIkYxJCEzUid5NTc2enNdJ0YxNyQkITNZRGt2Rz44cWBGOiQhMzs/Ino8SitHJXpGMTckJCEzTTlqI2ZWS194IkY6JCEzI1IzNHEmenonKiopRjE3JCQhMyNwVCoqZUo/WDojRjQkITNRKFFnVnNDM3YqRjE3JCQhM00sXDg4KGVqIUhGZW8kITNnWkQpKXB0RE0qKkYxNyQkITN3VDQsRngieiZHRmR1JCEzI0g6RWt5ZikqKioqRjE3JCQiM0MhW0gjcGwoKSpcI0ZlbyQhM2dtcCRSXkwwJSoqRjE3JCQiM1FwenRaR01OQEY0JCEzMztLKCpSJCpIXygqRjE3JCQiM0soKXBhZzgqem0iRjokITMpKSp5J29aWCNwLipGMTckJCIzTyEqSHJKVHVWY0Y6JCEzYVUtJjQuKUd3eUYxNyQkIjMrYUpdbXFaXzdGMSQhM28xcDw2PyE0XCdGMTckJCIzLy0lMyllUUUhRyNGMSQhM0FRZicqKUdEPidcRjE3JCQiM0M/anF5PzB5TkYxJCEzcU1UWCZcJj0kXCRGMTckJCIzKXkmeTU5U3NJXEYxJCEzLyYpSGIvJTRXSSNGMTckJCIzYTByLDkqSHBfJ0YxJCEzRmIlPkEjXHRKN0YxNyQkIjNrWCJHKSozTjAmeUYxJCEzKUhSJnpVXjVeZEY6NyQkIjNPWHhiI3pFJSoqKilGMSQhM2ciRy02IVE4bzxGOjckJCIzOnQuWk1kWEIoKkYxJCEzJj5rS28/RjNfI0Y0NyRGKiQiM0dNREZeJ0g/XyYhI1gtJSZDT0xPUkc2JiUkUkdCRyRGLCEiIkZeX2wkIiM1Rl9fbC0lKlRISUNLTkVTU0c2I0YrLUYmNiU3U0YpNyQkIjNbcTJpP1lnJioqKkYxJCIzQ2AzU09HYjtdISNCNyQkIjNfP0E5LltqJSkqKkYxJCIzdztrV0tNc3pLISNBNyQkIjN1bC9Mdm5QayoqRjEkIjMlRyVIbDN5UGU2RmVvNyQkIjNlamFrVlViTioqRjEkIjNrK1w9K1FwP0dGZW83JCQiM1twYUhCdl8pKikqRjEkIjM1RiFbRzNrInliRmVvNyQkIjNtbERAVSZHbyYpKkYxJCIzLzAlKVJvJCllZSQqRmVvNyQkIjMnPj8yUFFiaSEpKkYxJCIzJT5HKlJEYTZ2OUY0NyQkIjNbPnk3J2ZMaHUqRjEkIjN1SHBQeFIiZkAjRjQ3JCQiM2cocChSb29TeScqRjEkIjMheXpJIio+c1s7JEY0NyQkIjNHYlpnPmh2KycqRjEkIjM7I0gqbyMpKjRsUSVGNDckJCIzRSlRa0VLeGRfKkYxJCIzWU8rbUNNXypvJkY0NyQkIjNbNVhhXUw5TSUqRjEkIjNJIlxzNiVbYUx1RjQ3JCQiM1U/Mil5Iyo0WUwqRjEkIjN0cjouIWVtTV0qRjQ3JCQiM1B0UyEzelY8QipGMSQiM0FdQVB5IVFBPSJGOjckJCIzYlknZSdwZGVLIipGMSQiM0FhRz0nbytAVSJGOjckJCIzeSFIdHZPdngrKkYxJCIzOXheJjNxZGN1IkY6NyQkIjNnJzQ7R1FtaiopKUYxJCIzVzwmeSE+ZyZSMCNGOjckJCIzOUYlKUguKGUvdylGMSQiM2k/WTpFOCJSWCNGOjckJCIzQkRcQCZlM1pqKUYxJCIzJT5GTiU9M19ZR0Y6NyQkIjN1PVRfI0gxNlwpRjEkIjNTdSNmRmlDMEskRjo3JCQiMyEqW2A1JDNKIlwkKUYxJCIzcmQ0O2MqPmAiUUY6NyQkIjMtNT54ZSNHZT4pRjEkIjNDamRjblE0eVZGOjckJCIzJVFrKDNPeGtdISlGMSQiMzVEKDQ2Wid5UFxGOjckJCIzKVFnKTM6RmcqKXlGMSQiM184R1gmUlomKWUmRjo3JCQiMz8nNEVuIXB1PHhGMSQiM2FDLWNYWj88akY6NyQkIjNJOCY0Ozw4WWMoRjEkIjNrQTlGUSo9ZipwRjo3JCQiM01lX0cxKjNlUihGMSQiMy1rO3IlKil6ZngoRjo3JCQiM2FLJmZ3OigqekAoRjEkIjMzaihcQ0ZhT2opRjo3JCQiM3drNzFlOio0LyhGMSQiM0NcViN6I28tQyYqRjo3JCQiM2U5bEI6Pjpub0YxJCIzKXkieSg9bSxNLyJGMTckJCIzb3JzX0Q6XnJtRjEkIjM7OylIczhRKzoiRjE3JCQiMy9yOjJFKnlPXCdGMSQiMylbLTQlZkcoM0QiRjE3JCQiMz5qb2VdZCstakYxJCIzZUBheXZZdmo4RjE3JCQiM1JMcSk9SyxxNydGMSQiM1ElKTRdMFttcTlGMTckJCIzL0BUW0RVYk1mRjEkIjMvOTtISVRfI2YiRjE3JCQiMz04U3Q0KSpwX2RGMSQiMyYpXEYpUVVzPXIiRjE3JCQiM1swJEhUVjhAYyZGMSQiM1pELkRZcFNUPUYxNyQkIjNdZlIpSDIqZXZgRjEkIjMnR3VhMiNmb3M+RjE3JCQiM28xcyZIRkwvPSZGMSQiM3FjZ2c0PyNcNiNGMTckJCIzITR2MlohUSpHKlxGMSQiMzVlNU5ZQFZjQUYxNyQkIjNgd1UjKXotJT0hW0YxJCIzUT1DJlxPJmYwQ0YxNyQkIjM9MlZuIykqKlI4WUYxJCIzKyV6ckJxOnliI0YxNyQkIjM9cnYheUgrOVclRjEkIjNrdiZbK189OHEjRjE3JCQiMzVvWCg0LUZmQyVGMSQiM21eejpBOCkpcEdGMTckJCIzIT4vYWdCW0cyJUYxJCIzIj0yJ0cycjxDSUYxNyQkIjNlWycpZkwwUyEqUUYxJCIzbWVrZid5bEA+JEYxNyQkIjM2IXpsYTVPIT1QRjEkIjNjY1QlUWE+aE4kRjE3JCQiM144XSVbIVJgTk5GMSQiM0xqLy0yUmBOTkYxLUZbX2w2JkZdX2xGYF9sRl5fbEZeX2wtRmNfbDYjIiIjLSUrQVhFU0xBQkVMU0c2JFEhNiJGYl9tLSUlVklFV0c2JDskITJvVzZWRyYpKlI1ISM7JCIyczNkOXIqKipSNUZqX207JCEya08+dm8mKSpSNUZqX20kIjJfb3JTPCoqKlI1RmpfbQ==Calculons le vecteur vitesseV:=unapply([D(x)(t),D(y)(t)],t);NiM+SSJWRzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlNyQsJComLUkkY29zRzYkSSpwcm90ZWN0ZWRHRjJJKF9zeXNsaWJHRiU2IzkkIiIjLUkkc2luR0YxRjQiIiIhIiQsJComRjdGNkYvRjkiIiRGJUYlRiU=V\351rifions si les points A,B,C de param\350tre 0, Pi/4 et Pi/2 sont bien r\351guliersV(0);V(Pi/4);V(Pi/2);NiM3JCIiIUYkNiM3JCwkKiQiIiMjIiIiRiYjISIkIiIlLCRGJSMiIiRGKw==NiM3JCIiIUYkSeul le point B est r\351gulier d'o\371 la tangente en ce point dirig\351e par V(Pi/4) (pente=-2), dont voici alors une \351quation param\351tr\351eXTB:=x(Pi/4)+t*op(1,V(Pi/4));YTB:=y(Pi/4)+t*op(2,V(Pi/4));NiM+SSRYVEJHNiIsJiokIiIjIyIiIkYoI0YqIiIlKiZJInRHRiVGKkYoRikjISIkRiw=NiM+SSRZVEJHNiIsJiokIiIjIyIiIkYoI0YqIiIlKiZJInRHRiVGKkYoRikjIiIkRiw=V\351rifions la limite du taux d'accroissement en 0Limit((y(t)-y(0))/(x(t)-x(0)),t=0)=limit((y(t)-y(0))/(x(t)-x(0)),t=0);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkKiYtSSRzaW5HRiY2I0kidEdGKSIiJCwmKiQtSSRjb3NHRiZGLkYwIiIiISIiRjVGNi9GLyIiIUY4Et donc au point A de param\351tre 0, on a une tangente horizontaleXTA:=x(0)+t;YTA:=y(0);NiM+SSRYVEFHNiIsJiIiIkYnSSJ0R0YlRic=NiM+SSRZVEFHNiIiIiE=V\351rifions la limite du taux d'accroissement en Pi/2Limit((y(t)-y(Pi/2))/(x(t)-x(Pi/2)),t=Pi/2)=limit((y(t)-y(Pi/2))/(x(t)-x(Pi/2)),t=Pi/2);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkKiYsJiokLUkkc2luR0YmNiNJInRHRikiIiQiIiIhIiJGM0YzLUkkY29zR0YmRjAhIiQvRjEsJEkjUGlHRicjRjMiIiNJKnVuZGVmaW5lZEdGJw==Essayons alors celle de la valeur absolue du taux d'accroissementLimit(abs((y(t)-y(Pi/2))/(x(t)-x(Pi/2))),t=Pi/2)=limit(abs((y(t)-y(Pi/2))/(x(t)-x(Pi/2))),t=Pi/2);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkLUkkYWJzR0YnNiMqJiwmKiQtSSRzaW5HRiY2I0kidEdGKSIiJCIiIiEiIkY2RjYtSSRjb3NHRiZGMyEiJC9GNCwkSSNQaUdGJyNGNiIiI0kpaW5maW5pdHlHRic=On en d\351duit donc une tangente verticale au point de C param\350tre Pi/2XTC:=x(Pi/2);YTC:=y(Pi/2)+t;NiM+SSRYVENHNiIiIiE=NiM+SSRZVENHNiIsJiIiIkYnSSJ0R0YlRic=Tracons ces tangentesEqTA:=[XTA,YTA,t=-1..0]:EqTB:=[XTB,YTB,t=-0.5..0.5]:EqTC:=[XTC,YTC,t=-3..0]:plot([total,EqTA,EqTB,EqTC],color=[blue,red,magenta,green], thickness=[1,2,2,2],axes=none);#LSUlUExPVEc2KS0lJ0NVUlZFU0c2JTdpbjckJCIiIiIiISRGLEYsNyQkIjNKJGZNS0o0PHMqISM9JCIzPjJMKyNSZFthIyEjPzckJCIza0Y6ZUUyKUgwKkYxJCIzVjJlSC87dkQ7ISM+NyQkIjNRTVtOc00hNCJ6RjEkIjNsOVV5ZVxvK2JGOjckJCIzc2hjOzc+L3prRjEkIjN3a09ybClRJGY3RjE3JCQiM2JJJUhvT2IkUVxGMSQiMyNvaSllWjdcKUgjRjE3JCQiM1sjZTc9YUBHYiRGMSQiMzNUckYsV0Y9TkYxNyQkIjNDXnUuXCJIIylHI0YxJCIzIWVvcGIuODsmXEYxNyQkIjNnOkFwJDMnNGU3RjEkIjN1XmQ4SXk9IlsnRjE3JCQiM1FmamhaIjNcZCZGOiQiM28mUj5ucStIKnlGMTckJCIzeHBAQl5VZTU7RjokIjM3XnFpMEJ5ZSEqRjE3JCQiMyMpZU04WjcpUVYjRjQkIjMvYjxyIVtBKUgoKkYxNyQkIjNxQGwtKmZ5Ri0kISNAJCIzblVUcEFfXksqKkYxNyQkITNOUnNFbWQhKkdAISNGJCIyQU1cPmwlKioqKioqISM8NyQkITMxJW9RUy1jY0EkRmVvJCIzJ2YwaUgrSyZIKipGMTckJCEzUicqUmxyX0RIREY0JCIzZCVvW1NkVUdzKkYxNyQkITNrJykzZ0YzJEgmPUY6JCIzK3JNIjNTbCNvKilGMTckJCEzcT0hSERKSTpQJkY6JCIzJ1twOidwcVhVekYxNyQkITNbcFJFK2UrI0ciRjEkIjMhcCx2IVFxMVNrRjE3JCQhMzpWbENEX041PEYxJCIzJXoybUkjRyhcdiZGMTckJCEzJjNjV2MlKkhIPyNGMSQiMy02YC41VDBqXUYxNyQkITNnXEZjISl5VlxHRjEkIjMzMXU9IXpxI3BVRjE3JCQhMyFbSEs0VHhIYyRGMSQiM050KmVgQWgiM05GMTckJCEzYiw+RCk0dHVCJUYxJCIzY3NTc2JoSXhHRjE3JCQhM2A3ZSZRc2wjUVxGMSQiM00iZnYhPjJjKUgjRjE3JCQhMytWRCU0TWZJXCdGMSQiMyUqM2MhM3JJN0QiRjE3JCQhMyEqKVFedSN5cGx5RjEkIjM3UDxsQXd6KG8mRjo3JCQhMyYpWzs3a1lWQyEqRjEkIjM2SF4iKjNhNiw8Rjo3JCQhM2VQV2xaXW5CKCpGMSQiM2VscTIwXSJ5XiNGNDckJCEzJ0gmejFxNjtGKipGMSQiMzNjTUshNDErUiRGZW83JCQhMzElZlYmR2QmKSoqKipGMSQiMzdiPUIrbihHKUghI0Q3JCQhMzNrRUBoW11NKipGMSQhM2l3QTk0WCUqKilHRmVvNyQkITN1JnkxKmU5I3lzKkYxJCEzcWpWPSUqZjRoQ0Y0NyQkITNtcXdkWSxzYCEqRjEkITNxcCwoem86UWkiRjo3JCQhMytARSZbX0EnW3pGMSQhM08oKiplaWBMa00mRjo3JCQhMzQtNCsoPillRWxGMSQhMydHKj04TjQkPkIiRjE3JCQhM2x5JDRtallyLCZGMSQhMzgicCcpNDFoeUIjRjE3JCQhMz1XdilcQ2xGSCVGMSQhM00pKik0YzxcKkdHRjE3JCQhM0UhZnJ2bDdeZiRGMSQhM1VSIjNkJnpHd01GMTckJCEzWzdAU1swIilwR0YxJCEzU1huN213K1lVRjE3JCQhM2dUSSpvUyoqR0AjRjEkITNFJWVIYzk4KlxdRjE3JCQhMz9FJip5SlImPXAiRjEkITN5SSEqRyJHcEZ5JkYxNyQkITMhKik+XTlKSElDIkYxJCEzUid5NTc2enNdJ0YxNyQkITNZRGt2Rz44cWBGOiQhMzs/Ino8SitHJXpGMTckJCEzTTlqI2ZWS194IkY6JCEzI1IzNHEmenonKiopRjE3JCQhMyNwVCoqZUo/WDojRjQkITNRKFFnVnNDM3YqRjE3JCQhM00sXDg4KGVqIUhGZW8kITNnWkQpKXB0RE0qKkYxNyQkITN3VDQsRngieiZHRmR1JCEzI0g6RWt5ZikqKioqRjE3JCQiM0MhW0gjcGwoKSpcI0ZlbyQhM2dtcCRSXkwwJSoqRjE3JCQiM1FwenRaR01OQEY0JCEzMztLKCpSJCpIXygqRjE3JCQiM0soKXBhZzgqem0iRjokITMpKSp5J29aWCNwLipGMTckJCIzTyEqSHJKVHVWY0Y6JCEzYVUtJjQuKUd3eUYxNyQkIjMrYUpdbXFaXzdGMSQhM28xcDw2PyE0XCdGMTckJCIzLy0lMyllUUUhRyNGMSQhM0FRZicqKUdEPidcRjE3JCQiM0M/anF5PzB5TkYxJCEzcU1UWCZcJj0kXCRGMTckJCIzKXkmeTU5U3NJXEYxJCEzLyYpSGIvJTRXSSNGMTckJCIzYTByLDkqSHBfJ0YxJCEzRmIlPkEjXHRKN0YxNyQkIjNrWCJHKSozTjAmeUYxJCEzKUhSJnpVXjVeZEY6NyQkIjNPWHhiI3pFJSoqKilGMSQhM2ciRy02IVE4bzxGOjckJCIzOnQuWk1kWEIoKkYxJCEzJj5rS28/RjNfI0Y0NyRGKiQiM0dNREZeJ0g/XyYhI1gtJSZDT0xPUkc2JiUkUkdCRyRGLCEiIkZeX2wkIiM1Rl9fbC0lKlRISUNLTkVTU0c2I0YrLUYmNiU3UzckRi1GLTckJCIzLWhtbTthcnpARjpGLTckJCIzRU9MJGU5dWkyJUY6Ri03JCQiM0FzbW0iel8iNGlGOkYtNyQkIjNFcG1tVCZwaE4pRjpGLTckJCIzNUxMZSo9KUhcNUYxRi03JCQiMztubSJ6LzN1QyJGMUYtNyQkIjM3KytESiRSRFgiRjFGLTckJCIzJ2ZtO3pSJ29rO0YxRi03JCQiM0krK0QxSjp3PUYxRi03JCQiM1dMTEwzRW4kNCNGMUYtNyQkIjNxbW07L1JFJkcjRjFGLTckJCIzIikqKioqKlxLXTRdI0YxRi03JCQiMyQqKioqKipcUEF2ciNGMUYtNyQkIjNgKysrdidIaSNIRjFGLTckJCIzam1tInoqZXY6SkYxRi03JCQiM2tLTEwzNDdUTEYxRi03JCQiMyxMTExMWS5LTkYxRi03JCQiMz8qKipcN283VHYkRjFGLTckJCIzSUtMTCRRKm9dUkYxRi03JCQiM0ErK0QiPWxqOyVGMUYtNyQkIjNdKioqXFBhUjxQJUYxRi03JCQiMyFITExlOUVnZSVGMUYtNyQkIjNHTExlUiIzR3klRjFGLTckJCIzY21tOy9UMSYqXEYxRi03JCQiMyZlbTt6UlFiQCZGMUYtNyQkIjNcKioqXCg9PlkyYUYxRi03JCQiMzltbTt6WHU5Y0YxRi03JCQiM2wqKioqKipceSkpR2VGMUYtNyQkIjMnKikqKipcaV9RUWdGMUYtNyQkIjNAKioqXDd5JTNUaUYxRi03JCQiMzUqKioqXFAhW2hZJ0YxRi03JCQiM2tLTEwkUXgkb21GMUYtNyQkIjMhKSoqKioqXFArVilvRjFGLTckJCIzP21tInpwZSp6cUYxRi03JCQiMyUpKioqKipcI1wnUUgoRjFGLTckJCIzR0tMZTlTOCZcKEYxRi03JCQiM1IqKipcaT89YnEoRjFGLTckJCIzIkhMTCQzcz82ekYxRi03JCQiM2EqKipcN2BXbDcpRjFGLTckJCIzI3BtbW0nKlJSTClGMUYtNyQkIjNRbW07YTwuWSYpRjFGLTckJCIzPUxMZTl0T2MoKUYxRi03JCQiM3UqKioqKipcUWtcKilGMUYtNyQkIjNDTEwkM2RnNjwqRjFGLTckJCIzSW1tbW14R3AkKkYxRi03JCQiM0ErK0Qib0swZSpGMUYtNyQkIjNBKyt2PTVzI3kqRjFGLUYpLUZbX2w2JkZdX2xGYF9sRl5fbEZeX2wtRmNfbDYjIiIjLUYmNiU3UzckJCIzUVc9JFt3TSlRKSlGMSQhMz9waidIJnB3bjxGMTckJCIzKFtjLz8uVHdnKUYxJCEzcSozUixBdGxgIkYxNyQkIjMsQXhELDFbMSUpRjEkITNzWEFSKnk3YUwiRjE3JCQiMyE9QHEiZVlEIT0pRjEkITNqT1pJWW89NDZGMTckJCIzIXlIJG9VIkhEJnpGMSQhMz86I3kiM0xoOSkpRjo3JCQiM3VJLCNvJ2YpZXMoRjEkITMzXWxhXDo9W2xGOjckJCIzVkAhXC90ZWReKEYxJCEzL2RhJGU9NHBXJUY6NyQkIjNnczdCW1Q9KUgoRjEkITNBdXpsakw7ckFGOjckJCIzOz8hZVM/b0oyKEYxJCEzVycpXGEjPiNSK0BGZW83JCQiMydSWnIpKSlRKClbb0YxJCIzLjcrJSpII1I+QSNGOjckJCIzZC9qVTsnZiI9bUYxJCIzZDY8UmE+M0hYRjo3JCQiM1QtaW5maiVcVCdGMSQiMzlMRio9Xzk3YydGOjckJCIzQ1hYXWpqPCc9J0YxJCIzSzUkNE9bOSpbKSlGOjckJCIzVU8pW2QsbmsmZkYxJCIzL1JtNid6K1k2IkYxNyQkIjNUTCJ6XVwqNE5kRjEkIjMuVWp5OyRvZkwiRjE3JCQiM0poTiMqeWwyTWJGMSQiM1U5PiVIQiIqcGAiRjE3JCQiM0NlPUUpKTMvJkgmRjEkIjM/PE9nQnAtdzxGMTckJCIzL0wjM1JJWUQ0JkYxJCIzU1VzJnpdQCZ5PkYxNyQkIjM9OWtYanAqcCZbRjEkIjNhaCE0JVszMjlBRjE3JCQiM0smemNbKWVcW1lGMSQiM1QhbzNxIz5kQUNGMTckJCIzLmAoKilmOlAoPldGMSQiM3FBZChlbEk4bCNGMTckJCIzako4UVxaIT4/JUYxJCIzNVdUW2lJO3BHRjE3JCQiM1c0Yj8mWz5ZKFJGMSQiM0dtKmZtS1trNCRGMTckJCIzeWU5Ij5tK2Z3JEYxJCIzJnAsYSpccjswTEYxNyQkIjMkKTNfMDkjcDJhJEYxJCIzKm9FNXlmKUhJTkYxNyQkIjNdKkh0PCI0I3BJJEYxJCIzQ3dANCtwOWtQRjE3JCQiMzBHdz54X04uSkYxJCIzb1p5bU1Ecm5SRjE3JCQiMyl5NSQqXCIpKVwkKUdGMSQiMyV5T3NvKipvdj0lRjE3JCQiM1NKYmN3Yk9jRUYxJCIzS1cqKkhOQXE5V0YxNyQkIjMqUSZlLjorO01DRjEkIjMlPWlIb3oycGolRjE3JCQiM3kiemUnM1o7PkFGMSQiMyVSbzFLNS4+JltGMTckJCIzJzRNQm0yXC8pPkYxJCIzL05AQ04oPTE0JkYxNyQkIjNTT0ckUllfZnciRjEkIjNoUkUkek06XkkmRjE3JCQiM0ZjL11ZOiRwYCJGMSQiM1k+XU9saThNYkYxNyQkIjMqR14waGIvJUg4RjEkIjNSaipmZERqO3UmRjE3JCQiMzhKRGFTRl8tNkYxJCIzKVslSEtyXWFvZkYxNyQkIjN5XjU2TWpXISopKUY6JCIzKSpwVlh5Si0jPSdGMTckJCIzaSZ6IlEwXSkqZW1GOiQiM3MnSEY4SnBeUydGMTckJCIzbzNEYiNvQnRaJUY6JCIzVUQtaFZhTEJtRjE3JCQiMzVFJilSamtLJD4jRjokIjM3QmNfbF50Xm9GMTckJCEzYiI9MmE6PVZWJyEjQSQiMyFmLCJvVjdycnFGMTckJCEzcSd6JHlOdStjQUY6JCIzJVsmUVdiJm9tSChGMTckJCEzJypvS0BfSCZwWyVGOiQiMz0ubzMySnc+dkYxNyQkITN0bFB4JT1ncGAnRjokIjNJX0dNSVF3Q3hGMTckJCEzUUtjWzspKlwnKSkpRjokIjNTUVNeJHo8KGZ6RjE3JCQhM08rYUAyY3opNCJGMSQiMzV3MzM+TScpcCIpRjE3JCQhM1RzXGd1WSZHSyJGMSQiM3FbL1onW0FSUilGMTckJCEzJSoqZipRInoydGAiRjEkIjNBd11ELmNQMycpRjE3JEZhaWxGX2lsLUZbX2w2JkZdX2xGYF9sRl5fbEZgX2xGaGhsLUYmNiU3UzckRi0kISIjRiw3JEYtJCEzJioqKioqXFAmM1kkPkZecDckRi0kITMhKioqXGl2PHJ4PUZecDckRi0kITMxKytEO2FzOD1GXnA3JEYtJCEzOSsrdjhcSlw8Rl5wNyRGLSQhMz0rXTdWMEAmbyJGXnA3JEYtJCEzJykqKlxpJmV4ZGkiRl5wNyRGLSQhMz0rXWkrI1FVYyJGXnA3JEYtJCEzKioqKlxpITMlZis6Rl5wNyRGLSQhMyEqKipcN29TOlA5Rl5wNyRGLSQhMzErK108IykqPVAiRl5wNyRGLSQhMykpKioqXChHM1U5OEZecDckRi0kITMxKytdLVxyXDdGXnA3JEYtJCEzISoqKioqXChHVlo9IkZecDckRi0kITMxKytdKDRKQDciRl5wNyRGLSQhMyEqKipcaUlLRmw1Rl5wNyRGLSQhMycpKioqKipcRlBtKCoqRjE3JEYtJCEzKCkqKioqKioqNCcqUVMqRjE3JEYtJCEzPysrRGM+bVAoKUYxNyRGLSQhMyczKysrJj0kejkpRjE3JEYtJCEzTioqKlxpWC80XShGMTckRi0kITNDKioqXChvOHklKW9GMTckRi0kITMzKioqKlxpOiM+QydGMTckRi0kITMvKioqXDdldjpsJkYxNyRGLSQhM0crK10obzJbLCZGMTckRi0kITNDKytEMVtRYFZGMTckRi0kITNXKyt2VlVoeFBGMTckRi0kITNPKioqKlxpaXdiSkYxNyRGLSQhMzAsKytda0w4REYxNyRGLSQhMykzKytEQFdbKT1GMTckRi0kITM5KytEY2N1dzdGMTckRi0kITNULysrdillYiwnRjo3JEYtJCIzZCMqeSoqKioqXEA4JkZlbzckRi0kIjNGMCsrXTcsSGxGOjckRi0kIjNqKSoqXFA0dylSN0YxNyRGLSQiM3MsKyt2WmYiKT1GMTckRi0kIjMneioqXFAvLWFbI0YxNyRGLSQiM1IrK3Y9WWI7SkYxNyRGLSQiM3MpKioqKlxpQE90JEYxNyRGLSQiM2cpKipcUGZMJ3pWRjE3JEYtJCIzKD0rKyshKj49KyZGMTckRi0kIjNFKytdaV80UWNGMTckRi0kIjN1LCt2Vj41cGlGMTckRi0kIjNVLCsrXTokKltvRjE3JEYtJCIzJjMrK0RyIls4dkYxNyRGLSQiMysrKysrTCd5NSlGMTckRi0kIjNyKyt2ViEpZlQoKUYxNyRGLSQiM20rK0RjSTtbJCpGMTckRi1GKi1GW19sNiZGXV9sRl5fbEZgX2xGXl9sRmhobC0lKkFYRVNTVFlMRUc2IyUlTk9ORUctJStBWEVTTEFCRUxTRzYkUSE2IkZfYm4tJSVWSUVXRzYkOyQhMm9XNlZHJikqUjUhIzskIjJzM2Q5cioqKlI1RmdibjskISQxI0ZnaG0kIiQxIkZnaG0=