Exercice 10restart;rho:=theta->1+2*cos(theta)-4*cos(theta)^2;NiM+SSRyaG9HNiJmKjYjSSZ0aGV0YUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCgiIiJGLS1JJGNvc0c2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM5JCIiIyokRi5GNSEiJUYlRiVGJQ==Domaine d'EtudeOn r\351duit l'intervalle d'\351tude \340 -Pi..Pi par p\351riodicit\351#Puis \340 0..Pi carrho(-theta)=rho(theta);NiMvLCgiIiJGJS1JJGNvc0c2JEkqcHJvdGVjdGVkR0YpSShfc3lzbGliRzYiNiNJJnRoZXRhR0YrIiIjKiRGJkYuISIlRiQ=evalb(%);NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ=#Le support complet se d\351duit alors par sym\351trie par rapport \340 l'axe des abscissesPoints caract\351ristiquesIntersection avec l'axe des abscissesassume(t>=0 and t<=Pi);r:=[solve(rho(t)=0,t)];NiM+SSJyRzYiNyQsJkkjUGlHSSpwcm90ZWN0ZWRHRikiIiItSSdhcmNjb3NHNiRGKUkoX3N5c2xpYkdGJTYjLCYqJCIiJiNGKiIiIyNGKiIiJSMhIiJGNkYqRjgsJEYoI0YqRjI=r:=[solve(rho(t)/sin(t)=0,t)];NiM+SSJyRzYiNyYtSSdhcmN0YW5HNiRJKnByb3RlY3RlZEdGKkkoX3N5c2xpYkdGJTYjLCQqJiwmIiM1IiIiKiQiIiYjRjEiIiMhIiNGNCwmRjJGNEY0RjEhIiJGNCwkRidGOCwmLUYoNiMsJComLCZGMEYxRjJGNUY0LCZGNEYxRjIjRjhGNUY4RjRGMUkjUGlHRipGMSwmRjtGOEZCRjg=r:=simplify(r);NiM+SSJyRzYiNyYtSSdhcmN0YW5HNiRJKnByb3RlY3RlZEdGKkkoX3N5c2xpYkdGJTYjKiYsJiIjNSIiIiokIiImI0YwIiIjISIjRjMsJkYxRjBGMEYwISIiLCRGJ0Y3LCYtRig2IyomLCZGL0YwRjFGNEYzLCZGN0YwRjFGMEY3RjdJI1BpR0YqRjAsJkY6RjBGP0Y3t_0:=0:M(t_0)=[rho(t_0)*cos(t_0),rho(t_0)*sin(t_0)],'rho'(t_0)=rho(t_0);NiQvLUkiTUc2IjYjIiIhNyQhIiJGKC8tSSRyaG9HRiZGJ0Yqt_0:=Pi/3:M(t_0)=[rho(t_0)*cos(t_0),rho(t_0)*sin(t_0)],'rho'(t_0)=rho(t_0);NiQvLUkiTUc2IjYjLCRJI1BpR0kqcHJvdGVjdGVkR0YqIyIiIiIiJDckI0YsIiIjLCQqJEYtRi9GLy8tSSRyaG9HRiZGJ0Yst_0:=2*Pi/3:M(t_0)=[rho(t_0)*cos(t_0),rho(t_0)*sin(t_0)],'rho'(t_0)=rho(t_0);NiQvLUkiTUc2IjYjLCRJI1BpR0kqcHJvdGVjdGVkR0YqIyIiIyIiJDckIyIiIkYsLCQqJEYtRi8jISIiRiwvLUkkcmhvR0YmRidGNA==t_0:=Pi:M(t_0)=[rho(t_0)*cos(t_0),rho(t_0)*sin(t_0)],'rho'(t_0)=rho(t_0);NiQvLUkiTUc2IjYjSSNQaUdJKnByb3RlY3RlZEdGKTckIiImIiIhLy1JJHJob0dGJkYnISImCalcul de la direction de la tangenteD\351riv\351e de la param\351trisationDrho:=D(rho);NiM+SSVEcmhvRzYiZio2I0kmdGhldGFHRiVGJTYkSSlvcGVyYXRvckdGJUkmYXJyb3dHRiVGJSwmLUkkc2luRzYkSSpwcm90ZWN0ZWRHRjBJKF9zeXNsaWJHRiU2IzkkISIjKiYtSSRjb3NHRi9GMiIiIkYtRjgiIilGJUYlRiU=cV:=Drho(theta)/rho(theta);NiM+SSNjVkc2IiomLCYtSSRzaW5HNiRJKnByb3RlY3RlZEdGK0koX3N5c2xpYkdGJTYjSSZ0aGV0YUdGJSEiIyomLUkkY29zR0YqRi0iIiJGKEYzIiIpRjMsKEYzRjNGMSIiIyokRjFGNiEiJSEiIg==cotan VcV:=simplify(cV);NiM+SSNjVkc2IiwkKigtSSRzaW5HNiRJKnByb3RlY3RlZEdGK0koX3N5c2xpYkdGJTYjSSZ0aGV0YUdGJSIiIiwmISIiRi8tSSRjb3NHRipGLSIiJUYvLChGMUYvRjIhIiMqJEYyIiIjRjRGMUY2V:=unapply(arccot(cV),theta);On en d\351duit V modulo PiNiM+SSJWRzYiZio2I0kmdGhldGFHRiVGJTYkSSlvcGVyYXRvckdGJUkmYXJyb3dHRiVGJSwmSSNQaUdJKnByb3RlY3RlZEdGLiIiIi1JJ2FyY2NvdEc2JEYuSShfc3lzbGliR0YlNiMsJCooLUkkc2luR0YyNiM5JEYvLCYhIiJGLy1JJGNvc0dGMkY5IiIlRi8sKEY8Ri9GPSEiIyokRj0iIiNGP0Y8RkNGPEYlRiVGJQ==D'o\371 quelques tangentes particuli\350rest_0:=0:'V'(t_0)=V(t_0);NiMvLUkiVkc2IjYjIiIhLCRJI1BpR0kqcHJvdGVjdGVkR0YrIyIiIiIiIw==t_0:=Pi/3:'V'(t_0)=V(t_0);NiMvLUkiVkc2IjYjLCRJI1BpR0kqcHJvdGVjdGVkR0YqIyIiIiIiJCwkRikjRiwiIic=t_0:=Pi:'V'(t_0)=V(t_0);NiMvLUkiVkc2IjYjSSNQaUdJKnByb3RlY3RlZEdGKSwkRigjIiIiIiIjVariations de rho et de Vplot(rho,0..Pi);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdTNyQkIiIhRiskISIiRis3JCQiMyUpZUQyTHp4Wm8hIz4kITNhdSlcKipbKWZmKSohIz03JCQiMylcJHB4KkcqZiFHIkY0JCEzKSk+V0NnT1A2JipGNDckJCIzKzVAZXhHbV0+RjQkITMtMGU8K2xadykpRjQ3JCQiM1s5OSE9M29eaSNGNCQhM2knM1YsJFJNIip6RjQ3JCQiMzUhXEQwW25rSCRGNCQhM1dFd0YzIXBgKW9GNDckJCIzNyI9WmEmeiUpPVJGNCQhM01rRnRcOkwibyZGNDckJCIzZWRYYSgpb0dqWEY0JCEzMUokZUUoXFF6VUY0NyQkIjNXJTMqKkhibShIX0Y0JCEzI0c1NW0/PFtwI0Y0NyQkIjM3UFJyNCkzVCplRjQkITN5aFAhKmVMIlwsIkY0NyQkIjN5IlspeXlrWXhsRjQkIjMpKmZJUGZGam14RjE3JCQiM1tzJ29jR28kenJGNCQiM1M5bWRjdCx0QkY0NyQkIjNVUTA7Z3IncCZ5RjQkIjNtS1wkZiNcJilcVEY0NyQkIjN2Rk10PyRbdGApRjQkIjN3bm1nV3ZUb2VGNDckJCIzdSJwMzBrQEk+KkY0JCIzLSVRXjFWbyk+dUY0NyQkIjMjKlI3XEhlVil5KkY0JCIzJyo+TWBIJHBlcSlGNDckJCIzI0dbKSkqKTNXJ1w1ISM8JCIzVVFXS01EQS81RmhwNyQkIjMwJ1tAWFNAJzQ2RmhwJCIzMUoxJmYyKip5NCJGaHA3JCQiM0c5dyQzRypRejZGaHAkIjNjQSEqUkBAJTM9IkZocDckJCIzPiUzKjN0YzlUN0ZocCQiM00iUWNAJ2VFRzdGaHA3JCQiM0V5MERCQSEqMzhGaHAkIjNbellsNENvXDdGaHA3JCQiM3FqRS4jW0FNUCJGaHAkIjN4YEpqTnBQUTdGaHA3JCQiMypSOl9NZ1UyVyJGaHAkIjM1eSs2RCYqNCM+IkZocDckJCIzIlF1IykqKltqRF0iRmhwJCIzOio9Ty0iZXc8NkZocDckJCIzPWh3InltWCNwOkZocCQiM3BcaWEpcCI0LjVGaHA3JCQiM213TSEqNCg0JlE7RmhwJCIzOUhmS2RJa2olKUY0NyQkIjNDREw6aVUhKSlwIkZocCQiM0UxYFxGJGVceidGNDckJCIzbyhSMS8uQ1J3IkZocCQiM1EjR04hb24kem8lRjQ3JCQiMzJJZClINyo+Sj1GaHAkIjNbI1IyM193Kik+I0Y0NyQkIjNHZmI3d1ksKCo9RmhwJCEzdUVpTSdwbjc8JkYxNyQkIjNjTTUnemclcGc+RmhwJCEzS1NFQDhadiFRJEY0NyQkIjMqKm9KODouU0o/RmhwJCEzK1drJTRwNkV6J0Y0NyQkIjMpKipwIXpQRCRcNCNGaHAkITNIWVk0SEl6LTVGaHA3JCQiM2s8IWZodW1GOyNGaHAkITMtKyI9OT1ROU8iRmhwNyQkIjN3YWszQFlCQ0FGaHAkITNNb2QwaG81JXAiRmhwNyQkIjM5L2I8V19WIkgjRmhwJCEzIzQ/IylHUjs5MSNGaHA3JCQiMyMqel9WJHpsWU4jRmhwJCEzIlxceiZIXyRmUyNGaHA3JCQiM2NtallPKmYyVSNGaHAkITMxNlc6OnUwZ0ZGaHA3JCQiMyllcSk9VSF6YFsjRmhwJCEzIXoneWYiUUNjNCRGaHA3JCQiMyNRJ0hIZCNISWIjRmhwJCEzKVJeJ3pceWpJTUZocDckJCIzel5yJltYJT09RUZocCQhM0Yqel96WCxIdCRGaHA3JCQiMyc9QlNcMDpbbyNGaHAkITMzRk4nUSJwI28sJUZocDckJCIzW2dOLD9SKjN2I0ZocCQhMzksYiFmVlkicFVGaHA3JCQiM0AvMExNTmg2R0ZocCQhM0UtVTYhKlE4c1dGaHA3JCQiM3cjb1VYMTA3KUdGaHAkITNJQHprQyFbdW0lRmhwNyQkIjNXNDZ4ZSZbTSVIRmhwJCEzNVNII3pRbmUhW0ZocDckJCIzSC42KWU1OCk0SUZocCQhM0JRSWlQcWY4XEZocDckJCIzS3QyUlhDTHRJRmhwJCEzK2IhNCNlTXR3XEZocDckJCIzISkqKipcL2wjZlRKRmhwJCEiJkYrLSUmQ09MT1JHNiYlJFJHQkckIiM1Ri0kRitGLUZhW2wtJStBWEVTTEFCRUxTRzYkUSE2IkZlW2wtJSVWSUVXRzYkO0ZhW2wkIithRWZUSiEiKjskITElNCQ+W08qXDcmISM6JCIxdHgleTB3WVAiRmFcbA==plot(V,0..Pi);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdqbzckJCIiIUYrJCIzYycqW3pFanpxOiEjPDckJCIzVXppYG0qKSlRVSQhIz4kIjNxRW8xU0ciUngiRi43JCQiMyUpZUQyTHp4Wm9GMiQiM0tIYWtEUUNrPkYuNyQkIjMyYjRVOmEpbyMpKkYyJCIzLSozSVpfc0c2I0YuNyQkIjMpXCRweCpHKmYhRyIhIz0kIjMjZipRMTE7Z1ZBRi43JCQiMys1QGV4R21dPkZCJCIzbyg0LTVbdXNaI0YuNyQkIjNbOTkhPTNvXmkjRkIkIjMjSEw2XG9uIltFRi43JCQiMzUhXEQwW25rSCRGQiQiM2EpcHBdWm1ueCNGLjckJCIzNyI9WmEmeiUpPVJGQiQiMzVIMEFbUltzR0YuNyQkIjNlZFhhKClvR2pYRkIkIjMxNFphbFZKY0hGLjckJCIzVyUzKipIYm0oSF9GQiQiMyQ0KUg9Zi9nS0lGLjckJCIzQzVsTiJvUD5jJkZCJCIzb3Z4VTM+L29JRi43JCQiMzdQUnI0KTNUKmVGQiQiMyo+XWw6U1xCNSRGLjckJCIzJ1FkIylwQVtcMSdGQiQiM10lKWZhZWVuPkpGLjckJCIzWTQ3RFd3eU5pRkIkIjNjN3dneCFcbzgkRi43JCQiM08peTQ5ZFVyRCdGQiQiMyYpb1lsXnMpKlFKRi43JCQiM09vJG8mKVwoXHlpRkIkIjM7eUUobyRRN1RKRi43JCQiM09bcHNEQyYpKkgnRkIkIjMnZksmSCVcbmltIiEjPzckJCIzRUZiKUdOMjdLJ0ZCJCIzWzNVKj5HUSoqeiRGYHE3JCQiMzsnby1zPzxSTydGQiQiM1dgQC0uKSlRaiEpRmBxNyQkIjMyWCk+OjFGbVMnRkIkIjNlRUFDQ0pBSzdGMjckJCIzKUc7YSx4WT9cJ0ZCJCIzPXRNMjhqKUczI0YyNyQkIjN5IlspeXlrWXhsRkIkIjN6SSk9Z1FORCRIRjI3JCQiM2N3JkdBUTwleW9GQiQiMyIqcCEqKlEhNCpmI2ZGMjckJCIzW3Mnb2NHbyR6ckZCJCIzU1MiM3ZPSHgkKilGMjckJCIzVVEwO2dyJ3AmeUZCJCIzKTQrU1cwZTpmIkZCNyQkIjN2Rk10PyRbdGApRkIkIjNjeERWWk87WUJGQjckJCIzdSJwMzBrQEk+KkZCJCIzeSZRSigpKmYtakpGQjckJCIzIypSN1xIZVYpeSpGQiQiMzYpPlhaSCNSRFNGQjckJCIzI0dbKSkqKTNXJ1w1Ri4kIjN1Lk8pKik0YF5HJkZCNyQkIjMwJ1tAWFNAJzQ2Ri4kIjNTZV0+P29yZ21GQjckJCIzRzl3JDNHKlF6NkYuJCIzIUhWVCp5Rj8+KSlGQjckJCIzQ1xMJ3Babi1AIkYuJCIzV3g7dEEiUk8rIkYuNyQkIjM+JTMqM3RjOVQ3Ri4kIjNibkZjeSIzVzkiRi43JCQiMzdKKXAiW1ItdjdGLiQiM0xhaEQnXCZ6PzhGLjckJCIzRXkwREJBISozOEYuJCIzTzQhMz04YmReIkYuNyQkIjMpNGlURU5pNk0iRi4kIjNwWDhUU3NlNDxGLjckJCIzcWpFLiNbQU1QIkYuJCIzY1Jcbi4/JikqKj1GLjckJCIzdTNDdVVEMzI5Ri4kIjNreWoxbVNrJDMjRi43JCQiMypSOl9NZ1UyVyJGLiQiMy04KHkiejkqZUMjRi43JCQiMyEqW3VyWUlscjlGLiQiMzVSKSlceFVmdUJGLjckJCIzIlF1IykqKltqRF0iRi4kIjNvSDNcOSJlX1sjRi43JCQiMz1odyJ5bVgjcDpGLiQiMydRKm85RTFAdUVGLjckJCIzbXdNISo0KDQmUTtGLiQiM0xVI3AmPU1UPkdGLjckJCIzQ0RMOmlVISkpcCJGLiQiMyM0Z1NCPy8nPUhGLjckJCIzbyhSMS8uQ1J3IkYuJCIzZmVybFthSDJJRi43JCQiM3dqZ3B3OmMoeiJGLiQiM0tNQEUqXDF5LyRGLjckJCIzMklkKUg3Kj5KPUYuJCIzdyF6YXNBJ2YmMyRGLjckJCIzRShvcTcsYHclPUYuJCIzKHojZSgpKltdSzUkRi43JCQiM29XY2IqKm81az1GLiQiM25LQFZUM1Y/SkYuNyQkIjNRQiIpcFZRTHM9Ri4kIjMrcnRQLSNlKUdKRi43JCQiMzUtMSV5eWcwKT1GLiQiM3VhKG8jSFc9UEpGLjckJCIzc0BpKFFfPEUpPUYuJCIzKio9Mi8vM0RSSkYuNyQkIjNNVD0iKmZVbiUpPUYuJCIzSkNiJW9FNjg5JEYuNyQkIjMnNFlaZio0dCcpPUYuJCIzPTZkcVxIQ3Q8RmBxNyQkIjNlITMkKT50KHkpKT1GLiQiMzF3Im9fXzxAI1FGYHE3JCQiMyMpPlYwLzchSCo9Ri4kIjM1ZWlPXiE0SCF6RmBxNyQkIjNHZmI3d1ksKCo9Ri4kIjMzNW0jKSpcZmg+IkYyNyQkIjMvKEhWP2thKUc+Ri4kIjNTWFlpJT50I3BVRjI3JCQiM2NNNSd6ZyVwZz5GLiQiMyF6Z288LSNRUXNGMjckJCIzKipvSjg6LlNKP0YuJCIzIyo0OF4qKm9XYzhGQjckJCIzKSoqcCF6UEQkXDQjRi4kIjN4KGZ1UVJpZSE+RkI3JCQiM2s8IWZodW1GOyNGLiQiMyVvQHFOXHhiWyNGQjckJCIzd2FrM0BZQkNBRi4kIjMlMy0kekopR1MsJEZCNyQkIjM5L2I8V19WIkgjRi4kIjNST21wO1ZWL09GQjckJCIzIyp6X1YkemxZTiNGLiQiM1dqNTUmKm89IT0lRkI3JCQiM2NtallPKmYyVSNGLiQiM3VFc2VnUl02W0ZCNyQkIjMpZXEpPVUhemBbI0YuJCIzeVEocGUmPUptYUZCNyQkIjMjUSdISGQjSEliI0YuJCIzaGUpKT1QaS8saUZCNyQkIjN6XnImW1glPT1FRi4kIjNPbmZRLHddbHBGQjckJCIzJz1CU1wwOltvI0YuJCIzNnAzPiVwIkg5eUZCNyQkIjNbZ04sP1IqM3YjRi4kIjNcY3M5N0xWSigpRkI3JCQiM0AvMExNTmg2R0YuJCIzMyoqPjs7Zi5ZJypGQjckJCIzdyNvVVgxMDcpR0YuJCIzVXhAJzNsLyN5NUYuNyQkIjNXNDZ4ZSZbTSVIRi4kIjMrKCpHJyopPlR2PSJGLjckJCIzSC42KWU1OCk0SUYuJCIzJjNDKmZOV0E2OEYuNyQkIjNLdDJSWENMdElGLiQiM05wOnVcTCVbViJGLjckJCIzISkqKipcL2wjZlRKRi4kIjNxNGBeP2p6cTpGLi0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiRGK0ZjZGxGZGRsLSUrQVhFU0xBQkVMU0c2JFEhNiJGaGRsLSUlVklFV0c2JDtGZGRsJCIrYUVmVEohIio7JCExQ0hGXEttN2hGLiQiMilbRCRvOy9UPyQhIzs=Support de Courbetotal:=[rho(t),t,t=-Pi..Pi]:partiel:=[rho(t),t,t=0..Pi]:plot([total,partiel],-1..5,-2..2,color=[red,blue],thickness=[3,3],coords=polar);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JTdjcTckJCIiJiIiISQhM1E2TDomR001MCMhI0U3JCQiM0FKKTRHYUBcJ1whIzwkIjNTYj5sOkE+ME0hIz03JCQiM1s6eVMpem4yJ1tGMyQiM28oUltqSkchKnAnRjY3JCQiM2IjKW9ROyUpUTtaRjMkIjNPK3A7T2dxIVIqRjY3JCQiM1FpJGZKLWhhXyVGMyQiMyF6dSI+VnQzJj0iRjM3JCQiM3NwSSIqKipHbGdVRjMkIjNeI0dqNzRMblUiRjM3JCQiM1clbzwteUgtJlJGMyQiMztEV2cjZnRWaSJGMzckJCIzK2JtKiopW2YxZyRGMyQiMydlMi0vaTtKeCJGMzckJCIza1lZJj1TQVFBJEYzJCIzNyN6RUNUWnUnPUYzNyQkIjMkUjhJW15WQCRHRjMkIjNOQXcxZl07MD5GMzckJCIzKDRfYilcNFlNQ0YzJCIzd00wJj5tVW0pPUYzNyQkIjMlMzsuOiZIWXA/RjMkIjNHSiRmb2x1MSM9RjM3JCQiM2NdMUFSJEdociJGMyQiMyJILk5odVowciJGMzckJCIzU3R5ei5hSHE4RjMkIjMxQ2chM0NWVWIiRjM3JCQiMyl5MVZbcW09MCJGMyQiMy16XD5mXmBnOEYzNyQkIjNbWUYpXEVKcWQoRjYkIjNWI1t3YzY0IUc2RjM3JCQiMy5TQmk1InpKLyZGNiQiMyEqKj4jKm9yJyoqNCgpRjY3JCQiM21rdWorUWRkSEY2JCIzb3kydzEnUk0qZkY2NyQkIjNcek0oUis8Jkc4RjYkIjNqN2YqNCl5IVJAJEY2NyQkIjNhcU4pRyp5XyFIIiEjPiQiMz8rb1c6RU5aUUZpcTckJCEzVV86RFFTUGNnRmlxJCEzQi1pIVIpUVk/QkY2NyQkITM/MjpAJT5NXSYqKUZpcSQhMycqKjNzUU96N2AlRjY3JCQhMyEpbypRVGZIIWYpKUZpcSQhMyNHWFgoKjM5aF8nRjY3JCQhMyNwTToxaDEmKm8mRmlxJCEzOW1CLGMjeSVlJSlGNjckJCIzdUIzVSIpeT15ZiEjQCQhM1oxJzMmM0U+LDVGMzckJCIzLW9BYSJ5KXlwd0ZpcSQhMyY9KVtLb2ZyOjZGMzckJCIzNyYqMyYpeVBlSztGNiQhMztTNlA2I29xPSJGMzckJCIzSUlXdmNLV2o/RjYkITMjUnFlaWwsZz8iRjM3JCQiMz80eXFIR1QiXCNGNiQhM2tXdF1xTTE6N0YzNyQkIjNiWiVIciJ5bixGRjYkITNsJD50dkVrZkAiRjM3JCQiM18xLmpMKSk0M0hGNiQhM2MqKSp6ciJSXDk3RjM3JCQiM3RWJFstRyRvNEpGNiQhMyYpPi1iXGJwNTdGMzckJCIzXmc6MjRlWTBMRjYkITNxJm82KHBzaC83RjM3JCQiMzRFNEFzTT1WT0Y2JCEzI2ZkM3BoQXo9IkYzNyQkIjMrS0I8ZGFPYFJGNiQhMydbaydlJW9TVTsiRjM3JCQiMzNPSC95cDFKVUY2JCEzPjhIdCxTKFI4IkYzNyQkIjMhPSllOS9xd3JXRjYkITM7YmBOSyFvdjQiRjM3JCQiM0NAIipbQyNHRihbRjYkITNfJG9seihSSyMqKSpGNjckJCIzK1gnM2t0IUcqKlxGNiQhM0FEQngqRyMpPmMpRjY3JCQiM0c7UCNSS2NHXyVGNiQhM1s9IypRQS92b2ZGNjckJCIzPXhmR2l6MyopR0Y2JCEzUXVHXyE9Jj51R0Y2NyQkIjNxJz5kN1YsVlknRmlxJCEzJW9tKVtPSHU0XUZpcTckJCEzWyd6J3kiKW9abXpGaXEkIjM/dzlMWDclPU4mRmlxNyQkITM8bT8kPSg+QDtCRjYkIjNDSVhhejEmeUwiRjY3JCQhMy9lWD46JG9jeCRGNiQiMydlQVVqKiozcyc9RjY3JCQhM2twJSo+SyI9KSo9JkY2JCIzN0RDUiVvZkA7I0Y2NyQkITMlUS1OeFJadGInRjYkIjM1NWJ5LFBBRkFGNjckJCEzPTpDNHU3KnB2KEY2JCIzeVVzI1tBPlcxI0Y2NyQkITNpJCpwU2Q7W20nKUY2JCIzNipcZSpcJUc4dSJGNjckJCEzd048RjE5I3lOKkY2JCIzJ0dnKVxYIjNdRyJGNjckJCEzY3laLSwtQUkpKkY2JCIzWyUzb2Ipei1yb0ZpcTckJCEzPXhrP25MbSoqKipGNiQiM0U8QlZnLkEsSiEjPzckJCEzXSl6PzdYQHQlKSpGNiQhM0Y4Jlt5KCp6Wl8nRmlxNyQkITN3cVpdRSE+dU8qRjYkITMnRzAhZWlAVHc3RjY3JCQhM1VWeEhlJzMoKnApRjYkITN2U0R2KnkpekM8RjY3JCQhMyhRLUJGZjFMI3lGNiQhM2U7JjMmWyVHeS8jRjY3JCQhM0krPG8lKmVWeG1GNiQhMz91dT5RMURAQUY2NyQkITMpUXlPJkhEaXBgRjYkITMjSFkkKiozOHUkPSNGNjckJCEzSC10SU9ZMy9SRjYkITN5Zz9tLG0iSCE+RjY3JCQhM3NUVE5hYydRUSNGNiQhMztgQjxpO1luOEY2NyQkITNnIzRXJXl0WF8hKkZpcSQhM0IzVXM5WSNwLCdGaXE3JCQiMyt6ZEw6Iyl6YV1GaXEkIjNJZWIuTzY6aVFGaXE3JCQiMyQ0J3lgKilbOVVHRjYkIjMvQCVbbyMzWzVHRjY3JCQiM3hfYiopZiRvU14lRjYkIjM6NWIibzBWSSVmRjY3JCQiM2dMIyo0XWAnKioqXEY2JCIzJSplQkYiW0o8bylGNjckJCIzMUBhYUU+MGhbRjYkIjNSTTdaa2khUSUqKkY2NyQkIjN3RVItTlpdcldGNiQiMylIY2NPczl3NCJGMzckJCIzVTAjZlApeUtBVUY2JCIzdjMnXD1MIjRONkYzNyQkIjMwWV1tPEkoUSRSRjYkIjNJeSFbSGMzZzsiRjM3JCQiM1RAcyRwOFE2aCRGNiQiMylHb2kpeSZ5KSo9IkYzNyQkIjNlQlZ5TSkqZmZLRjYkIjM1KW88SGhpaT8iRjM3JCQiMycpKnlfbXFtdDAkRjYkIjNmKSllVCVwOD5AIkYzNyQkIjM3TD1jRz9JXEdGNiQiMyh5Ino4Vmg6OjdGMzckJCIzQyhSKjMiUmBraiNGNiQiMyIzVltTaVJmQCJGMzckJCIzaWdLZzR4Kik+Q0Y2JCIzR1ImSCJSJD5VQCJGMzckJCIzOyoqNCU0OC4sKT5GNiQiM0oieXRPI3A2LjdGMzckJCIzeWw6JVwiXCxSOkY2JCIzdUsvLW1xZyI9IkYzNyQkIjMjKj4mNHJoPF9RKEZpcSQiM1Y9K2o/JnpDNiJGMzckJCIzRyhvLVpya2YyJEZdXGwkIjM8Iyk+M3ZFMjE1RjM3JCQhM2BkbXZ6PyRlUyZGaXEkIjNVRiUqemwzS2smKUY2NyQkITN0YmNxSElqMSgpRmlxJCIzMnJIUUEhb1xxJ0Y2NyQkITM7RzxqIXBkWCkqKUZpcSQiMyF6XDopeio+IXpYRjY3JCQhMyEpNCp6LVx2PiNlRmlxJCIzbyRbOzJvISpIPyNGNjckJCIzWlNwLW5Kbkc7RmlxJCEzaV84MXFRUDxbRmlxNyQkIjMlR0JXJDQicFZPIkY2JCEzV2BVUXMjZVtHJEY2NyQkIjNhXm1IIVs/I3BIRjYkITMqWyRwTFgoUjIsJ0Y2NyQkIjM0Q15rMTVAOF1GNiQhM3UoR1oiKSl5XHYnKUY2NyQkIjN2KD51WG8wM2EoRjYkITMmZihSY0NWdkM2RjM3JCQiMz8nb0R4dWB3LyJGMyQhMztvKVxrMS53TiJGMzckJCIzP0NJKzMqM1RQIkYzJCEzS3BGUERYRGM6RjM3JCQiMzUxSTU1QEhIPEYzJCEzVzpBMjMvXjo8RjM3JCQiMycpej0sOyEzVzIjRjMkITMiNCdbR2RmKT0jPUYzNyQkIjNpZW4qbzhHMFYjRjMkITNnXnJrb0A9Jyk9RjM3JCQiM3oiKj47dUZ2VUdGMyQhM0w7WmM7OCpbIT5GMzckJCIzNydcVCZRM0FbS0YzJCEzbSM0TSpHQDpqPUYzNyQkIjNpbGxgSVpfJmYkRjMkITMzQyMqPmZ4I1t4IkYzNyQkIjMnKlFNSSF6RSg+UkYzJCEzIVI0RFZrNSxrIkYzNyQkIjNXZDBdMTk1SlVGMyQhM3UlKVJ4WmsqKVs5RjM3JCQiMykpSCZIPTxpJilcJUYzJCEzcWBvIikqZXVRQCJGMzckJCIzTmEpeSNwY1QxWkYzJCEzNiQpPnlPWEtVJipGNjckJCIzJVJrKyMqNFU7J1tGMyQhM2FbayRwT3gneW1GNjckJCIzJSo+TW9GTjlsXEYzJCEzWVciUl8kNFwlUiRGNjckRiokIjNRNkw6JkdNNTAjRi8tJSpUSElDS05FU1NHNiMiIiQtJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkRixGZVxtRmZcbS1GJjYlN2puNyQkRmVcbUYsJEYsRiw3JCQhMyI9SyUpZm4hXE8pKkY2JCEzIVxwOHJxZWp1J0ZpcTckJCEzeiF6Sz8uIVxMJSpGNiQhM19LQ2lGJSpwOTdGNjckJCEzYHhTbCJma181KkY2JCEzW0VWRWwmNFNbIkY2NyQkITNZIkcjeVxEODMoKUY2JCEzX3hWIj5NVDBzIkY2NyQkITM1SkhBTzczViMpRjYkITNBM0VwVyNlJj4+RjY3JCQhMzZQbVtbJ2Z2cihGNiQhMyFSZlJTRlxRMiNGNjckJCEzJSlIbkZPbjhTckY2JCEzW2ZMQyFRJzN5QEY2NyQkITNiZm07eiRRWV4nRjYkITN0NSNHZGxhKUdBRjY3JCQhMyVHZ1YkKiplZigqZUY2JCEzNyhRJkhxJUhdQSNGNjckJCEzYW0qKSl5Y00xRCZGNiQhM291WV5kbSgpcEBGNjckJCEzLlM8dXJEXVRRRjYkITNvY1coR0NNZCk9RjY3JCQhMycqKWVRWSV6aE1CRjYkITNdJypSdldrJmZNIkY2NyQkITN5P2dOYkdsTyUpRmlxJCEzcHNLbFRJaFRjRmlxNyQkIjMtOFZYVlVIWWhGaXEkIjN3XEsoUSZlLFtaRmlxNyQkIjMlRzteJW9ERih5IkY2JCIzYSIqZj9pci9oOkY2NyQkIjNUNislPlA5TiRIRjYkIjNoUl01PGxFTkhGNjckJCIzV3JDZiFbamwmUUY2JCIzLXBwU2w6RUJXRjY3JCQiMz8iPUxbRkMjKlwlRjYkIjNjQ3dxJDNALCFmRjY3JCQiMyUqPTtRJVJCeCZbRjYkIjMsKilHKXopKSllQ3NGNjckJCIzJ2ZHMDhjPykqKlxGNiQiMylwIlxXJGUhMzQoKUY2NyQkIjMnZmBEblFkYylbRjYkIjNHcWoySyc9PyQpKkY2NyQkIjNVVShlUCV5eS9YRjYkIjMveCopXDkpUTo0IkYzNyQkIjNHQDZWd0xlZ1VGNiQiM3pvIXA1Kno1STZGMzckJCIzayRRQGNFXWcoUkY2JCIzc1dNdylbSUA7IkYzNyQkIjMsMklbYV9VQk9GNiQiMztMWyp6XFEiKj0iRjM3JCQiM0ozKkg7T2ZiQiRGNiQiMyE+PCVIdSlwcT8iRjM3JCQiM148bDdXN3lTSUY2JCIzKipIeiVRTmxBQCJGMzckJCIzWSNlMS47LzIlR0Y2JCIzQm0qZSZbbEI6N0YzNyQkIjNMWXgheSVwRE9FRjYkIjMlb0gnPiwjUmZAIkYzNyQkIjNFJ1IvOUYkUkdDRjYkIjMiUTwrY3dMVkAiRjM3JCQiM20lNFknUSVIeik+RjYkIjMpW3A1R1kuTT8iRjM3JCQiM00hZjRuKy5nYSJGNiQiM1Naa1FkQC4jPSJGMzckJCIzZyV6JilRT2twOSJGNiQiMyV5M18saSMzYDZGMzckJCIzTEhTMjxqIjRpKEZpcSQiM0JMcSRcIls7OjZGMzckJCIzW0InKXlSMlhiOkZdXGwkIjN6bWcuKlshNC41RjM3JCQhM1NycVlEMWtFZEZpcSQiM0tDL3QoM1pVVylGNjckJCEzbyJcdWQmM051JylGaXEkIjNvQTN6WElPUm5GNjckJCEzUXZfMlIiR3YqKilGaXEkIjMvYDhlUT95K1lGNjckJCEzYzQneiNbK3FoY0ZpcSQiMy4pSC1OIjQlWzcjRjY3JCQiMycqSF9ieTM/ZDtGaXEkITNFVlo3XTVhKSpbRmlxNyQkIjNrKm8yQXYwXUciRjYkITNGWltjIltAcTckRjY3JCQiMzQ8Jyk+OEdDPklGNiQhMy0/KmUkKUc5WjMnRjY3JCQiMygpUlIsST1qPV1GNiQhMycpNDhkUGx1Im8pRjY3JCQiMyMpeVt4Qnd5J2YoRjYkITNxPTRdJW96KEg2RjM3JCQiM0svYG9WOSkpSDVGMyQhM1ltdyFlJno2WDhGMzckJCIzV0UvQSNIYy1PIkYzJCEzIylwJ2VpKWUiKls6RjM3JCQiMy8iKTRwVi9sKXAiRjMkITNXQmIpRyQ9JlFxIkYzNyQkIjNTdE5CejJedD9GMyQhMzpNT1xPb21APUYzNyQkIjMrdEsucSIpb19DRjMkITMhNHdCIzNpcSkpPUYzNyQkIjMpelZrZ2kmUmBHRjMkITNCLTMqMyZmZC8+RjM3JCQiM0ZSJikpSDpWSkIkRjMkITM9JmY3d2ZNZSc9RjM3JCQiM1hPTGsmXDpdZyRGMyQhM1tAXmM1XmxyPEYzNyQkIjM/dTVYbnJWWlJGMyQhM19cZSFIaFFlaSJGMzckJCIzVUowZilIZTNCJUYzJCEzIWZ4XWRYdiFcOUYzNyQkIjNHbidwYWY0LF4lRjMkITMscEEiM0VlOz8iRjM3JCQiMyYzJkhgelEkPXIlRjMkITNfQklFM09OZyUqRjY3JCQiM3UoZmh5TiUqNChbRjMkITNpRXBJeDVSY2tGNjckJCIzWGd4XDQ+UURcRjMkITNDOjlGU1gmRyVcRjZGY1ttNyQkIjNBXytYOyJwNypcRjMkITNxUkM2OnE9LzxGNkZoW21GW1xtLUZgXG02JkZiXG1GZlxtRmZcbUZjXG0tJSVWSUVXRzYkOyQhIzVGZVxtJCIjXUZlXG07JEZdXGxGZVxtJCIjP0ZlXG0=