Exercice 13restart;rho:=theta->(1+2*cos(theta))/(2*sin(theta)+1);NiM+SSRyaG9HNiJmKjYjSSZ0aGV0YUdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiYsJiIiIkYuLUkkY29zR0YlNiM5JCIiI0YuLCYtSSRzaW5HRiVGMUYzRi5GLiEiIkYlRiVGJQ==Domaine d'EtudeOn r\351duit l'intervalle d'\351tude \340 -Pi..Pi par p\351riodicit\351rho(theta+2*Pi)=rho(theta);NiMvKiYsJiIiIkYmLUkkY29zRzYkSSpwcm90ZWN0ZWRHRipJKF9zeXNsaWJHNiI2I0kmdGhldGFHRiwiIiNGJiwmLUkkc2luR0YpRi1GL0YmRiYhIiJGJA==evalb(%);NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ=sPoints caract\351ristiquesIntersection avec l'axe des abscissesassume(t>=-Pi and t<=Pi);r:=[solve(rho(t)=0,t)]; avec le point ONiM+SSJyRzYiNyQsJEkjUGlHSSpwcm90ZWN0ZWRHRikjIiIjIiIkLCRGKCMhIiNGLA==r:=[solve(rho(t)*sin(t)=0,t)];avec l'axe des abscissesNiM+SSJyRzYiNyUiIiEsJEkjUGlHSSpwcm90ZWN0ZWRHRiojIiIjIiIkLCRGKSMhIiNGLQ==r:=[solve(rho(t)*cos(t)=0,t)];avec l'axe des ordonn\351esNiM+SSJyRzYiNyYsJEkjUGlHSSpwcm90ZWN0ZWRHRikjISIiIiIjLCRGKCMiIiJGLCwkRigjRiwiIiQsJEYoIyEiI0Yyt_0:=-2*Pi/3:M(t_0)=[rho(t_0)*cos(t_0),rho(t_0)*sin(t_0)],'rho'(t_0)=rho(t_0);NiQvLUkiTUc2IjYjLCRJI1BpR0kqcHJvdGVjdGVkR0YqIyEiIyIiJDckIiIhRi8vLUkkcmhvR0YmRidGLw==t_0:=-Pi/2:M(t_0)=[rho(t_0)*cos(t_0),rho(t_0)*sin(t_0)],'rho'(t_0)=rho(t_0);NiQvLUkiTUc2IjYjLCRJI1BpR0kqcHJvdGVjdGVkR0YqIyEiIiIiIzckIiIhIiIiLy1JJHJob0dGJkYnRiw=t_0:=0:M(t_0)=[rho(t_0)*cos(t_0),rho(t_0)*sin(t_0)],'rho'(t_0)=rho(t_0);NiQvLUkiTUc2IjYjIiIhNyQiIiRGKC8tSSRyaG9HRiZGJ0Yqt_0:=Pi/2:M(t_0)=[rho(t_0)*cos(t_0),rho(t_0)*sin(t_0)],'rho'(t_0)=rho(t_0);NiQvLUkiTUc2IjYjLCRJI1BpR0kqcHJvdGVjdGVkR0YqIyIiIiIiIzckIiIhI0YsIiIkLy1JJHJob0dGJkYnRjA=t_0:=2*Pi/3:M(t_0)=[rho(t_0)*cos(t_0),rho(t_0)*sin(t_0)],'rho'(t_0)=rho(t_0);NiQvLUkiTUc2IjYjLCRJI1BpR0kqcHJvdGVjdGVkR0YqIyIiIyIiJDckIiIhRi8vLUkkcmhvR0YmRidGLw==Calcul de la direction de la tangenteDrho:=D(rho);NiM+SSVEcmhvRzYiLUkiREc2JEkqcHJvdGVjdGVkR0YpSShfc3lzbGliR0YlNiNJJHJob0dGJQ==cV:=Drho(theta)/rho(theta);NiM+SSNjVkc2IiooLCYqJi1JJHNpbkc2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiNJJnRoZXRhR0YlIiIiLCZGKSIiI0YwRjAhIiIhIiMqKCwmRjBGMC1JJGNvc0dGK0YuRjJGMEYxRjRGN0YwRjRGMEY2RjNGMUYwcV:=factor(simplify(cV));cotan VNiM+SSNjVkc2IiwkKigsKC1JJHNpbkc2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiNJJnRoZXRhR0YlIiIiLUkkY29zR0YrRi5GMCIiI0YwRjAsJkYpRjNGMEYwISIiLCZGMEYwRjFGM0Y1ISIjV:=unapply(arccot(cV),theta);On en d\351duit V modulo PiNiM+SSJWRzYiZio2I0kmdGhldGFHRiVGJTYkSSlvcGVyYXRvckdGJUkmYXJyb3dHRiVGJSwmSSNQaUdJKnByb3RlY3RlZEdGLiIiIi1JJ2FyY2NvdEc2JEYuSShfc3lzbGliR0YlNiMsJCooLCgtSSRzaW5HRjI2IzkkRi8tSSRjb3NHRjJGOkYvIiIjRi9GLywmRjhGPkYvRi8hIiIsJkYvRi9GPEY+RkBGPkZARiVGJUYlD'o\371 quelques tangentes particuli\350rest_0:=-Pi/2:'V'(t_0)=V(t_0);NiMvLUkiVkc2IjYjLCRJI1BpR0kqcHJvdGVjdGVkR0YqIyEiIiIiIy1JJ2FyY2NvdEc2JEYqSShfc3lzbGliR0YmNiNGLQ==t_0:=0:'V'(t_0)=V(t_0);NiMvLUkiVkc2IjYjIiIhLCZJI1BpR0kqcHJvdGVjdGVkR0YrIiIiLUknYXJjY290RzYkRitJKF9zeXNsaWJHRiY2IyIiIyEiIg==t_0:=Pi/2:'V'(t_0)=V(t_0);NiMvLUkiVkc2IjYjLCRJI1BpR0kqcHJvdGVjdGVkR0YqIyIiIiIiIywmRilGLC1JJ2FyY2NvdEc2JEYqSShfc3lzbGliR0YmNiNGLSEiIg==les tangentes ont m\352me orientation relativement \340 la direction (OM)Etudions les asymptotes en -Pi/6 et -5Pi/6t_0:=-Pi/6:#En -Pi/6 \340 droite, on a bien une branche infinie car:Limit('rho'(theta),theta=t_0,right)=limit(rho(theta),theta=t_0,right);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkkcmhvR0YpNiNJJnRoZXRhR0YpL0YuLCRJI1BpR0YnIyEiIiIiJ0kmcmlnaHRHRilJKWluZmluaXR5R0Ynla direction asymptotique est -Pi/6. dans le rep\350re tourn\351 de cet angle on a la coordonn\351e YY:=theta->rho(theta)*sin(theta+Pi/6);NiM+SSJZRzYiZio2I0kmdGhldGFHRiVGJTYkSSlvcGVyYXRvckdGJUkmYXJyb3dHRiVGJSomLUkkcmhvR0YlNiM5JCIiIi1JJHNpbkc2JEkqcHJvdGVjdGVkR0Y1SShfc3lzbGliR0YlNiMsJkYwRjFJI1BpR0Y1I0YxIiInRjFGJUYlRiU=Limit('Y'(theta),theta=t_0,right)=limit(Y(theta),theta=t_0,right);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkiWUdGKTYjSSZ0aGV0YUdGKS9GLiwkSSNQaUdGJyMhIiIiIidJJnJpZ2h0R0YpLCYiIiJGNyokIiIkI0Y3IiIjI0Y3Rjk=D'o\371 l'\351quation de l'asymptote dans ce nouveau rep\350re Y=1+sqrt(3)/3Position relative:delta:=simplify(combine(Y(tau)-1-sqrt(3)/3));#Expression de Y(tau)-1-sqrt(3)/3NiM+SSZkZWx0YUc2IiwkKiYsLi1JJHNpbkc2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiMsJkkkdGF1R0YlIiIiSSNQaUdGLCNGMSIiJ0Y0LUYqNiMsJkYwIiIjRjJGM0Y0ISIkRjEtRio2I0YwISM3KiYiIiQjRjFGOEY6RjEhIiUqJEY+Rj8hIiNGMSwmRjpGOEYxRjEhIiJGMw==delta_u:=subs(tau=u-Pi/6,delta);#changement de variableNiM+SShkZWx0YV91RzYiLCQqJiwuLUkkc2luRzYkSSpwcm90ZWN0ZWRHRixJKF9zeXNsaWJHRiU2I0kidUdGJSIiJy1GKjYjLCZGLyIiI0kjUGlHRiwjISIiRjBGMCEiJCIiIi1GKjYjLCZGL0Y5RjVGNiEjNyomIiIkI0Y5RjRGOkY5ISIlKiRGP0ZAISIjRjksJkY6RjRGOUY5RjcjRjlGMA==Limit('delta_u'/u,u=0,right)=limit(delta_u/u,u=0,right);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlKiZJKGRlbHRhX3VHRikiIiJJInVHRikhIiIvRi4iIiFJJnJpZ2h0R0YpLCYqJCIiJCNGLSIiIyNGLSIiJyNGL0Y5Ri0=Comme delta_u est au voisinage de 0 (\340 droite) du signe de la limite delta_u/u, on trouve quela courbe est au dessus de l'asymptoteu:='u':#assume(u>-Pi/6 and u<-Pi/7);plot(delta_u,u=-0.1..0.1);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdTNyQkITMvKysrKysrKzUhIz0kITMjKSl6MzE2OnF2IiEjPjckJCEzX25tbTtwMGsmKkYvJCEzPyVRYydcbCh6bCJGLzckJCEzSUxMJDM8WFo9KkYvJCEzLyl5NUNMck1kIkYvNyQkITNdbm1tVCVwImUoKUYvJCEzOU1bW3YqKkchWyJGLzckJCEzRW5tbSI0bShHJClGLyQhMzNbPHoyQ1opUSJGLzckJCEzRExMJDNpLjkhekYvJCEzL3FXbVFZMSpIIkYvNyQkITMjem1tVCFSPTB2Ri8kITNgbVVMPzAkekAiRi83JCQhM1UsK11QOCNcNChGLyQhM3pYU01kS3FONkYvNyQkITM3b207L3NpcW1GLyQhMzEraV1zMmRfNUYvNyQkITNrKytdKHkkcFppRi8kITMnNFZPPSo9TTsoKiEjPzckJCEzT0xMTCR5YUUiZUYvJCEzQT5FRUoyIVIhKilGZ243JCQhMy5ubW0iPnMlSGFGLyQhMy4hXCpmc048MCMpRmduNyQkITM3KysrXSQqNCkqXEYvJCEzWF08eChwdXVWKEZnbjckJCEzKTQrKytEYlxjJUYvJCEzIzNDVWhSaG5vJ0ZnbjckJCEzaSsrK10xYVpURi8kITMlWz51PXgnUiMpZkZnbjckJCEzSW5tOy8jKVtvUEYvJCEzJVFZQU0zIioqZWBGZ243JCQhM1dNTEwkPWV4SiRGLyQhM0R6Iz4ob1V6UFlGZ243JCQhM1ZMTExMMiRmJEhGLyQhM3k1Y1QwIj1SLyVGZ243JCQhM3krK11QWXgiXCNGLyQhM1FuVDR1TXpzTEZnbjckJCEzN05MTEw3aSk0I0YvJCEzKUctei92KlIneiNGZ243JCQhM1MrK11QJ3BzbSJGLyQhM2k6STIkKj0zJD0jRmduNyQkITNVKytdNzRfYzdGLyQhMylveC92XC93aCJGZ243JCQhM21MTEwkM3gleiMpRmduJCEzbXY6IipbcCdvLyJGZ243JCQhMycpUkxMM3MkUU0lRmduJCEzKyE0Y0w8YzNTJiEjQDckJCEzL0hybW07enIpKiEjQSQhMyZvOkpKNWtcPyJGYnM3JCQiM1xBTExlenc1VkZnbiQiMydRUHkiZShmKzsmRl5zNyQkIjNdIyoqKipcUFEjXCIpRmduJCIzIzQiUTQqeUp1ZSpGXnM3JCQiMyVHTEwkZSIqW0g3Ri8kIjM1NjgnKT5KQD45RmduNyQkIjNbKSoqKioqKnB2eGwiRi8kIjNhIyplOCdSSmMoPUZnbjckJCIzLyoqKioqXF9xbjIjRi8kIjNEI2ZGeXMlPS5CRmduNyQkIjNzKSoqKlxpJnBAWyNGLyQiM1c4QHVQQC0qcCNGZ243JCQiM3kpKioqKlwyJ0hLSEYvJCIzQllgZ25XKXo2JEZnbjckJCIzZ2ptbW1adk9MRi8kIjM3RCopSDcmM2daJEZnbjckJCIzcysrK10yZ29QRi8kIjMjKSlHZyEzdy1SUUZnbjckJCIzKT1MTGVSPCpmVEYvJCIzS04qelZKPjM6JUZnbjckJCIzbyoqKioqKlwpSHhlJUYvJCIzc0FxLDZhLnRXRmduNyQkIjMra207SCFvLSpcRi8kIjNFcDBLYkxWZVpGZ243JCQiM1grK103ay42YUYvJCIzL1dPKm8zUSRRXUZnbjckJCIzI2VtbW1UOUMjZUYvJCIzSVJFPy9xIVFIJkZnbjckJCIzVSgqKipcaSEqM2BpRi8kIjMleiJ6L0ZJK1ViRmduNyQkIjNTTUxMTCp6eW0nRi8kIjM9dSpbKCllT0N3JkZnbjckJCIzP0tMTDNOMSM0KEYvJCIzM0tOcGIzKipvZkZnbjckJCIzWW5tO0hZdDd2Ri8kIjMzSDlRIT4tXTonRmduNyQkIjMhKikqKioqKipwKEcqKnlGLyQiMzZVJSk0J1svJTRqRmduNyQkIjMwbm1tVDZLVSQpRi8kIjNBdHEkb1c+cFknRmduNyQkIjNbSkxMTGJkUSgpRi8kIjNvV1Vzc3pAIWYnRmduNyQkIjMvLCtdaWAxaCIqRi8kIjNmPDt5WVBTLm5GZ243JCQiM00qKioqXFA/V2wmKkYvJCIzPXYkW2sxJTMleidGZ243JCQiMy8rKysrKysrNUYsJCIzOXZxLiZHK0Iob0Znbi0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiFGY1tsRmRbbC0lK0FYRVNMQUJFTFNHNiRRInU2IlEhRmpbbC0lJVZJRVdHNiQ7JEZjW2xGY1tsJEZiW2whIiM7JCExXDVSOCshZiE9ISM8JCIyd2RmR0pcNk8oRi8=t_0:=-Pi/6:En -Pi/6 \340 gauche, on a bien une branche infinie car:Limit('rho'(theta),theta=t_0,left)=limit(rho(theta),theta=t_0,left);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkkcmhvR0YpNiNJJnRoZXRhR0YpL0YuLCRJI1BpR0YnIyEiIiIiJ0klbGVmdEdGKSwkSSlpbmZpbml0eUdGJ0Yzla direction asymptotique est -Pi/6. dans le rep\350re tourn\351 de cet angle on a la coordonn\351e YY:=theta->rho(theta)*sin(theta+Pi/6);NiM+SSJZRzYiZio2I0kmdGhldGFHRiVGJTYkSSlvcGVyYXRvckdGJUkmYXJyb3dHRiVGJSomLUkkcmhvR0YlNiM5JCIiIi1JJHNpbkc2JEkqcHJvdGVjdGVkR0Y1SShfc3lzbGliR0YlNiMsJkYwRjFJI1BpR0Y1I0YxIiInRjFGJUYlRiU=Limit('Y'(theta),theta=t_0,left)=limit(Y(theta),theta=t_0,left);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkiWUdGKTYjSSZ0aGV0YUdGKS9GLiwkSSNQaUdGJyMhIiIiIidJJWxlZnRHRiksJiIiIkY3KiQiIiQjRjciIiMjRjdGOQ==D'o\371 l'\351quation de l'asymptote dans ce nouveau rep\350re Y=1+sqrt(3)/3Position relative:delta:=simplify(combine(Y(tau)-1-sqrt(3)/3));#Expression de Y(tau)-1-sqrt(3)/3NiM+SSZkZWx0YUc2IiwkKiYsLi1JJHNpbkc2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiMsJkkkdGF1R0YlIiIiSSNQaUdGLCNGMSIiJyEiJy1GKjYjLCZGMCIiI0YyRjNGNSIiJEYxLUYqNiNGMCIjNyomRjojRjFGOUY7RjEiIiUqJEY6Rj9GOUYxLCZGO0Y5RjFGMSEiIiNGQ0Y0delta_u:=subs(tau=u-Pi/6,delta);#changement de variableNiM+SShkZWx0YV91RzYiLCQqJiwuLUkkc2luRzYkSSpwcm90ZWN0ZWRHRixJKF9zeXNsaWJHRiU2I0kidUdGJSEiJy1GKjYjLCZGLyIiI0kjUGlHRiwjISIiIiInRjAiIiQiIiItRio2IywmRi9GOkY1RjYiIzcqJkY5I0Y6RjRGO0Y6IiIlKiRGOUZARjRGOiwmRjtGNEY6RjpGN0Y2Limit('delta_u'/u,u=0,left)=limit(delta_u/u,u=0,left);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlKiZJKGRlbHRhX3VHRikiIiJJInVHRikhIiIvRi4iIiFJJWxlZnRHRiksJiokIiIkI0YtIiIjI0YtIiInI0YvRjlGLQ==comme delta_u est au voisinage de 0 (\340 droite) du signe contraire de la limite delta_u/u, on trouve quela courbe est en dessous de de l'asymptotet_0:=-5*Pi/6:En -5Pi/6 \340 droite, on a bien une branche infinie car:Limit('rho'(theta),theta=t_0,right)=limit(rho(theta),theta=t_0,right);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkkcmhvR0YpNiNJJnRoZXRhR0YpL0YuLCRJI1BpR0YnIyEiIiIiJ0kmcmlnaHRHRilJKWluZmluaXR5R0Ynla direction asymptotique est -5Pi/6. dans le rep\350re tourn\351 de cet angle on a la coordonn\351e YY:=theta->rho(theta)*sin(theta+5*Pi/6);NiM+SSJZRzYiZio2I0kmdGhldGFHRiVGJTYkSSlvcGVyYXRvckdGJUkmYXJyb3dHRiVGJSomLUkkcmhvR0YlNiM5JCIiIi1JJHNpbkc2JEkqcHJvdGVjdGVkR0Y1SShfc3lzbGliR0YlNiMsJkYwRjFJI1BpR0Y1IyIiJiIiJ0YxRiVGJUYlLimit('Y'(theta),theta=t_0,right)=limit(Y(theta),theta=t_0,right);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkiWUdGKTYjSSZ0aGV0YUdGKS9GLiwkSSNQaUdGJyMhIiIiIidJJnJpZ2h0R0YpSSlpbmZpbml0eUdGJw==D'o\371 l'\351quation de l'asymptote dans ce nouveau rep\350re Y=1-sqrt(3)/3Position relative:delta:=simplify(combine(Y(tau)-1+sqrt(3)/3));#Expression de Y(tau)-1+sqrt(3)/3NiM+SSZkZWx0YUc2IiwkKiYsLi1JJGNvc0c2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiMsJkkkdGF1R0YlIiIiSSNQaUdGLCNGMSIiJCIiJyEiJEYxLUYqNiMsJkYwIiIjRjJGM0Y1LUkkc2luR0YrNiNGMCEjNyomRjQjRjFGOkY7RjEiIiUqJEY0RkBGOkYxLCZGO0Y6RjFGMSEiIiNGMUY1delta_u:=subs(tau=u-5*Pi/6,delta);#changement de variableNiM+SShkZWx0YV91RzYiLCQqJiwuLUkkY29zRzYkSSpwcm90ZWN0ZWRHRixJKF9zeXNsaWJHRiU2IywmSSJ1R0YlIiIiSSNQaUdGLCMhIiIiIiMiIichIiRGMS1GKjYjLCZGMEY1RjIjISIlIiIkRjYtSSRzaW5HRis2IywmRjBGMUYyIyEiJkY2ISM3KiZGPSNGMUY1Rj5GMSIiJSokRj1GRkY1RjEsJkY+RjVGMUYxRjQjRjFGNg==Limit('delta_u'/u,u=0,right)=limit(delta_u/u,u=0,right);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlKiZJKGRlbHRhX3VHRikiIiJJInVHRikhIiIvRi4iIiFJJnJpZ2h0R0YpLCYqJCIiJCNGLSIiIyNGLyIiJ0Y4Ri0=comme delta_u est au voisinage de 0 (\340 droite) du signe de la limite delta_u/u, on trouve quela courbe est en desous de l'asymptotet_0:=-5*Pi/6:#En -5Pi/6 \340 gauche, on a bien une branche infinie car:Limit('rho'(theta),theta=t_0,left)=limit(rho(theta),theta=t_0,left);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkkcmhvR0YpNiNJJnRoZXRhR0YpL0YuLCRJI1BpR0YnIyEiJiIiJ0klbGVmdEdGKSwkSSlpbmZpbml0eUdGJyEiIg==#la direction asymptotique est -Pi/6. dans le rep\350re tourn\351 de cet angle on a la coordonn\351e YY:=theta->rho(theta)*sin(theta+5*Pi/6);NiM+SSJZRzYiZio2I0kmdGhldGFHRiVGJTYkSSlvcGVyYXRvckdGJUkmYXJyb3dHRiVGJSomLUkkcmhvR0YlNiM5JCIiIi1JJHNpbkc2JEkqcHJvdGVjdGVkR0Y1SShfc3lzbGliR0YlNiMsJkYwRjFJI1BpR0Y1IyIiJiIiJ0YxRiVGJUYlLimit('Y'(theta),theta=t_0,left)=limit(Y(theta),theta=t_0,left);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkiWUdGKTYjSSZ0aGV0YUdGKS9GLiwkSSNQaUdGJyMhIiYiIidJJWxlZnRHRiksJiIiIkY3KiQiIiQjRjciIiMjISIiRjk=D'o\371 l'\351quation de l'asymptote dans ce nouveau rep\350re Y=1-sqrt(3)/3Position relative:delta:=simplify(combine(Y(tau)-1+sqrt(3)/3));#Expression de Y(tau)-1-sqrt(3)/3NiM+SSZkZWx0YUc2IiwkKiYsLi1JJGNvc0c2JEkqcHJvdGVjdGVkR0YsSShfc3lzbGliR0YlNiMsJkkkdGF1R0YlIiIiSSNQaUdGLCNGMSIiJCIiJyEiJEYxLUYqNiMsJkYwIiIjRjJGM0Y1LUkkc2luR0YrNiNGMCEjNyomRjQjRjFGOkY7RjEiIiUqJEY0RkBGOkYxLCZGO0Y6RjFGMSEiIiNGMUY1delta_u:=subs(tau=u-5*Pi/6,delta);#changement de variableNiM+SShkZWx0YV91RzYiLCQqJiwuLUkkY29zRzYkSSpwcm90ZWN0ZWRHRixJKF9zeXNsaWJHRiU2IywmSSJ1R0YlIiIiSSNQaUdGLCMhIiIiIiMiIichIiRGMS1GKjYjLCZGMEY1RjIjISIlIiIkRjYtSSRzaW5HRis2IywmRjBGMUYyIyEiJkY2ISM3KiZGPSNGMUY1Rj5GMSIiJSokRj1GRkY1RjEsJkY+RjVGMUYxRjQjRjFGNg==Limit('delta_u'/u,u=0,left)=limit(delta_u/u,u=0,left);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlKiZJKGRlbHRhX3VHRikiIiJJInVHRikhIiIvRi4iIiFJJWxlZnRHRiksJiokIiIkI0YtIiIjI0YvIiInRjhGLQ==comme delta_u est au voisinage de 0 (\340 gauche) du signe contraire de la limite delta_u/u, on trouve quela courbe est au dessus de de l'asymptoteVariations de rho et de Vplot(rho,-Pi..Pi,-10..10,discont=true);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JjdpbjckJCEzNSsrK2FFZlRKISM8JCEyRSdleiIqKioqKioqKipGLDckJCEzLlRnMXpGPUlKRiwkITNcWXNEMyo9Sy0iRiw3JCQhM0l0VSp5NWItNyRGLCQhM1M3IipSUCQpNFc1Riw3JCQhMzIwKmVMUyE0NEpGLCQhMzs0aCVlLyJRbzVGLDckJCEzJz5nOT5wXnk0JEYsJCEzRUlfXjMqUVA0IkYsNyQkITNTJSlSNSdSbW0zJEYsJCEzJDNWXD5dXio+NkYsNyQkITNdOSsyJj4nSHdJRiwkITNDaF5QUlk9WDZGLDckJCEzJ1wjW2NfJWViMSRGLCQhM1NGJHBTPEJCPCJGLDckJCEzZWVhIVJZYFcwJEYsJCEzTV54KDMtXjo/IkYsNyQkITN6Z2IzKjMlUVZJRiwkITMiZW5zUDpdPkIiRiw3JCQhM3R4VFt3eSo+LiRGLCQhM01dWCgpZkhrazdGLDckJCEzOU5zQSUqKW8+LSRGLCQhMz1mJ1wuKSlIWkgiRiw3JCQhM2UvUmNOJ3kxLCRGLCQhM3VtZzxVcTtJOEYsNyQkITNtY1AsPT9NKipIRiwkITNBXV0hcCEzY244Riw3JCQhM29SK1EnMzwlKSlIRiwkITNuX0BuKTNvYVMiRiw3JCQhM1NwJUg9PydceUhGLCQhM08uJkdtI1JpVDlGLDckJCEzVVYuYDUkKnBtSEYsJCEzI1EqM2ZbQidwWyJGLDckJCEzcS8jKj4nejBuJkhGLCQhMzt0dm5eIVx2XyJGLDckJCEzSWJLR2o0M1hIRiwkITMlW0kxXzhKdmQiRiw3JCQhMypmXStrLCJ6TUhGLCQhM1JFQjNcIzNYaSJGLDckJCEzPyNHLFFKLE4jSEYsJCEzSy9qeSU+QiR6O0YsNyQkITMpPXNXciUzdjdIRiwkITNEQSkqXGI2ME48Riw3JCQhM2s2bSlIJ1FgLEhGLCQhMysvOV5QJClIKHoiRiw3JCQhMyF6KGYnKnBKQiIqR0YsJCEzJTRsJipbPCRlZT1GLDckJCEzNUx6JzRbQSwpR0YsJCEzQmlOd2EubUg+Riw3JCQhM00/N3EoZiJlb0dGLCQhMyRISF48W3EnND9GLDckJCEzXVE1KltBTiZlR0YsJCEzP18lWzgoPTkmMyNGLDckJCEzQ2xtLW5bb1pHRiwkITMtendiYHJmdEBGLDckJCEzaydbV2NRdmskR0YsJCEzW05fcV5KbXRBRiw3JCQhM180OywmNDRiI0dGLCQhM19gcS5ISlgiUSNGLDckJCEzIT45W1xrKSpbIkdGLCQhM29Zbi4wJDNtXCNGLDckJCEzS3VbPVx2Ni5HRiwkITMrJGVLQUdPI1JFRiw3JCQhM1d3aGw1PGAjeiNGLCQhM1VBbk8tKltKeSNGLDckJCEzISopekMmbyFIN3kjRiwkITMrV0ZzaillbSZIRiw3JCQhM3lWMyZbPigpNHgjRiwkITNPR1EyQF9JTkpGLDckJCEzNXE9cEAsemZGRiwkITM7dXAtJmYiSGZMRiw3JCQhM0sjZmQlW1hEXEZGLCQhMydILCJcK28wL09GLDckJCEzeUoudVE9Q1FGRiwkITNpbD4pW0NcWiFSRiw3JCQhM2NSOzAtXFpGRkYsJCEzIylRRDFXXTZjVUYsNyQkITM1UGo7PEg/O0ZGLCQhM09bbC5dQz8wWkYsNyQkITMqKTNZLGNtTTBGRiwkITNLJypHOWw5J2VDJkYsNyQkITNxREMpNGNXVXAjRiwkITNDIltvJykzMmomZkYsNyQkITMjZlYtcFJNS28jRiwkITMnSEQ7KUdjcCgqb0YsNyQkITNvSlZlKj48Sm4jRiwkITMlKlE2KlwqR0AjNClGLDckJCEzV19FdFw8X2hFRiwkITNvMm43R241OTUhIzs3JCQhMy9cXDpUMTpeRUYsJCEzS3Fbdmc9Uj04RmV5NyQkITNGIj4nR3dHNFNFRiwkITM1UlVJVjEkbyY+RmV5NyQkITMpeilwS0k1IVtqI0YsJCEzcTg0Rl1ySGZERmV5NyQkITNwJXluVj00JkhFRiwkITNePzJ1WStBOlBGZXk3JCQhM2c2PWQiWygzR0VGLCQhMzNRJG8hPUBGS1VGZXk3JCQhM15RZXh5ZG1FRUYsJCEzVUxFeENJJCk9XEZleTckJCEzVWwpemYyV19pI0YsJCEzOVIhKXopXD9ZKGVGZXk3JCQhM0wjKlE9dEIjUWkjRiwkITNxJXo7MSlmaydIKEZleTckJCEzQz56UXExU0FFRiwkITNCMHVocnM6TycqRmV5NyQkITM6WT5mbip5NGkjRiwkITM1JipSLiI9MS9VIiEjOjckJCEzaGZSPjsiby1pI0YsJCEzZzwrOScpUidIJz1GaFxsNyQkITMxdGZ6a3NiPkVGLCQhMzZXJ0dvZW96cSNGaFxsNyQkITN6enA0Uj0/PkVGLCQhM2dVSyF6TTpNXSRGaFxsNyQkITNfJyl6UjhrJSk9RUYsJCEzOyMpPmFSMzZpXEZoXGw3JCQhM0QkKiopcCgpNFw9RUYsJCEzajgzOitFcDEmKUZoXGw3JCQhMygqKioqKio+Y04iPUVGLCQhM0U5KW9NJyoqXCQpSCEjOTdjbzckJCEzLSsrKzUxZDxFRiwkIjNBJz0tJnB0JDMpKipGaFxsNyQkITNcPjRUPVc5O0VGLCQiMytuaCR6IXBwIUcjRmhcbDckJCEzX1E9I29BPVpoI0YsJCIzXyNHJSo+PDBkRyJGaFxsNyQkITMqenZLXy4jSDhFRiwkIjM9J3pQKil5Q0slKilGZXk3JCQhM1p4T2tWZSc9aCNGLCQiMydSY0l5VjM2Jm9GZXk3JCQhM1Q7YllnTSw0RUYsJCIzRV9XRj8iNC5tJUZleTckJCEzTmJ0R3g1OzFFRiwkIjMkKVxSMyRcW2NfJEZleTckJCEzQ0w1JDRKYy9nI0YsJCIzNS4iSGQ1WE1PI0ZleTckJCEzNzZaZFc6diVmI0YsJCIzayRSdU5gLDt4IkZleTckJCEzI3AxaT0sVUxlI0YsJCIzdVNZciIqZT9zNkZleTckJCEzb0ElXCJ6QyQ+ZCNGLCQiMyshKXlUNHBGJXApRiw3JCQhMycpZWRMS3gyX0RGLCQiM2h3JSlRbVAjKj1mRiw3JCQhM2QlNEFiKUhBS0RGLCQiM3NyP00qPkRJVSVGLDckJCEzU3Q9Jm9dbHZbI0YsJCIzSV1OXjY8PDRGRiw3JCQhMyR5ekMlND9oVUNGLCQiM2F5OCEzNm40Jj1GLDckJCEzcyEqUjdvQCh5UiNGLCQiM3pDUSxbbSVHTCJGLDckJCEzbTgpUiIzRVJjQkYsJCIzM252dVxQTiw1Riw3JCQhM2l6Z09FSFc4QkYsJCIzTUciPU0mZkhZdSEjPTckJCEzN0hiLi9WLXBBRiwkIjMvdS0xUCszcmBGY2RsNyQkITNIRix6SyJbWkEjRiwkIjNjNUhEKSlIYilvJEZjZGw3JCQhM1smKjRWW1k/ekBGLCQiMyNcYVsnZXlUS0FGY2RsNyQkITM/UHdoQSoqM1JARiwkIjM0YXhwZyJIVDYiRmNkbDckJCEzZWooKVxVLSRSNCNGLCQhMy1DLGd3K0sqNCIhIz83JCQhMyMpb1dSS15lWz9GLCQhM3ZmRFFiVmhONUZjZGw3JCQhMyk+U2tscicpWysjRiwkITMpNC1xIT4kMysmPkZjZGw3JCQhM0Ncd2dvVj9sPkYsJCEzQVYhKWVOJnpZdCNGY2RsNyQkITNMLCNHKD0jPSE9PkYsJCEzJHl0QGFMJD5GT0ZjZGw3JCQhM3dSR09nYC95PUYsJCEzTT9zPWg8ZGZWRmNkbDckJCEzSjZPUEJ1YUo9RiwkITNdNEFXQ3I0Jj4mRmNkbDckJCEzP0ZmT3EpKVEheiJGLCQhM1kmbygpM2VxIUdmRmNkbDckJCEzNW5uVjk5Qlg8RiwkITN3Iz4yX1FCTHQnRmNkbDckJCEzSjhUZVAzQi08RiwkITNzTilSenojUjN2RmNkbDckJCEzaS9ecFlVT2Q7RiwkITNfLmYuNk1ATCQpRmNkbDckJCEzZ09eVTVGOzs7RiwkITNTKyl5ckNMPDYqRmNkbDckJCEzI1F3QnVHQDxkIkYsJCEzJT0hPXdIJDQ6KSoqRmNkbDckJCEzPEgoZipRImZiXyJGLCQhMz02Tic9P3pFNCJGLDckJCEzSUMpPkkmW1AmWyJGLCQhM2lJJlJucE0jejZGLDckJCEzLFMtS0JaKD5XIkYsJCEzMSM0UkA7NyJ5N0YsNyQkITMjRyNbalUiUXJSIkYsJCEzJyoqKls5JVswdFEiRiw3JCQhMy8zLHgmSHVLTiJGLCQhM1hrLWwxLlYtOkYsNyQkITMsODpcb1AkM0oiRiwkITM3diNcciRvO0I7Riw3JCQhMyEpWy8nKSl6NVBFIkYsJCEzLXYiKilIQig9cTxGLDckJCEzVSU+b1pybzhBIkYsJCEzJVItISo+ZEtqIj5GLDckJCEzJVIjR0UtJmZoPCJGLCQhM28sNVEhSHotNCNGLDckJCEzTSN6QWpCJD5ONkYsJCEzVXFuOCgqPlJuQUYsNyQkITNfTTovKEcxLzQiRiwkITNbZCdwMTAtdFsjRiw3JCQhM01YazRlX0VbNUYsJCEzQF4jb2hBX2JzI0YsNyQkITNYcEtZU2RALzVGLCQhM1NpIm8+I28yO0lGLDckJCEzKyFmIWVhR1w2JypGY2RsJCEzYzhKJGZ6d0xOJEYsNyQkITNNWyMqZSMpcGlnIipGY2RsJCEzcVhbVG1ENCN5JEYsNyQkITNmJmYiPWgmKlFFKClGY2RsJCEzKW9fJFEjbztlSCVGLDckJCEzV0M9XHohPkJHKUZjZGwkITNTPGklW0YnSG9cRiw3JCQhM0MjeidmRGQjPiV5RmNkbCQhMzE9LDsiPWltJmVGLDckJCEzSVw7JjMoKlxzVihGY2RsJCEzYSRvRDBATzkpcEYsNyQkITN3OiN5IykpZVd0cEZjZGwkITMzPkBtcm16MiopRiw3JCQhM3VIZngoKVJoZWxGY2RsJCEzPWZKakMlNG48IkZleTckJCEzRDknUSVmbUo7aEZjZGwkITM5YmpPTEE5eDxGZXk3JCQhMzsnWyYqKXAiXFkhZkZjZGwkITNMLSNlMEpFXE0jRmV5NyQkITMzZUJOIW8iKUhwJkZjZGwkITM7bXJxKDNDIlFNRmV5NyQkITNDb1UsbylbI3piRmNkbCQhM0EqZTZZOl0/ZSVGZXk3JCQhM1F5aG5iZ15sYUZjZGwkITM/TCd5V1U1JGZvRmV5NyQkITMiZmwiZl9HM1BhRmNkbCQhMypwUD9UZV81JHlGZXk3JCQhM1hMcl1cJ1wnM2FGY2RsJCEzKkdfImZ3TSJHNypGZXk3JCQhMyk0aEFrVzstUSZGY2RsJCEzNXRaIVwkZVEjNCJGaFxsNyQkITNfKTNRTEMkeV5gRmNkbCQhMzk4WnNIWSQ0TyJGaFxsNyQkITMxbU5EUytOQmBGY2RsJCEzZihbLVQjUUcvPUZoXGw3JCQhM2VWIXByJG8iXEgmRmNkbCQhM110QyNvSWNhbiNGaFxsNyQkITMjSHlFY0IrMkcmRmNkbCQhMyIpbz81SzFgRU5GaFxsNyQkITNDQVgzTU9bbV9GY2RsJCEzU3B6PFgzNnJeRmhcbDckJCEzY2hBYUtxRV9fRmNkbCQhM3dXMzptKCozKW8qRmhcbDckJCEzeSoqKioqNFZdIVFfRmNkbCQhM1dOL14yeilwayhGZ15sN2luNyQkITNNKysrKHlaREImRmNkbCQiMzNQSyw0UVsmZSVGZ15sNyQkITNkUXY0dFVlMl9GY2RsJCIzYUlJKipbOmVhYkZoXGw3JCQhMyN6MiY+ZjJpIz0mRmNkbCQiM01CJzM4dHJvJkhGaFxsNyQkITNFPEVIWHNsZF5GY2RsJCIzNyd5JyozKSo0XCwjRmhcbDckJCEzaGMsUkpQcEteRmNkbCQiM1sqKiozMSE0Q0c6RmhcbDckJCEzSU5fZS5udyMzJkZjZGwkIjNlWmUkKiopKlExLiJGaFxsNyQkITMqUkoheXYnUkcuJkZjZGwkIjMpcFhuQnQkPXd4RmV5NyQkITNvI1J2ems3SClcRmNkbCQiM2sxWW9aKlxVQydGZXk3JCQhM1FyLzw/YylIJFxGY2RsJCIzXT4hPSU9Ij5yQCZGZXk3JCQhMzFdYk8jZmVJKVtGY2RsJCIzPSgqbyF5KWViIVslRmV5NyQkITM/RzFjazo4TFtGY2RsJCIzKytuLy96X0VSRmV5NyQkITNUVTRNYE1VTFlGY2RsJCIzWiYzQjlaLiRHRUZleTckJCEzMWM3N1VgckxXRmNkbCQiMyczTXlOK1doKD5GZXk3JCQhM1clcFZFVSY9JzMlRmNkbCQiM18ieV40T2s0USJGZXk3JCQhM0ZLaDsuYmxRUEZjZGwkIjM7ZF9NLG1raDVGZXk3JCQhMyV6JD1BPyEpKXAmSEZjZGwkIjM3LCRwPjA8SSlwRiw3JCQhM2socCx5OFIsPCNGY2RsJCIzbyUpPUhcSGUnPSZGLDckJCEzd2kobzIsSXFRIkZjZGwkIjNzJ0dGOm5nKzclRiw3JCQhMylvJkdqXWcoKTRtISM+JCIzJ2Y7KnotQmZeTUYsNyQkIjMjUnlMRj9EKHkhKkZdZmwkIjN1X3kmeiYpPWslSEYsNyQkIjNZcl1iWSlRRm8pRlxbbiQiMyllNG4jZUI8XURGLDckJCIzQlZDejJyRVY7RmNkbCQiMztvKjNpYFAsQyNGLDckJCIzb0laYycqR1dTQ0ZjZGwkIjN1eUpaaSxpIyk+Riw3JCQiM2ApPUZfdyZmVUpGY2RsJCIzUSNHQnpwYUx6IkYsNyQkIjNtIlsnKTNmYEkkUkZjZGwkIjMmPixSaz1TPWgiRiw3JCQiM1dkTks3cnZFWkZjZGwkIjMpW3Y5JnlhWGI5Riw3JCQiM3kxViJcX1A7XCZGY2RsJCIzZ25fI2ZVcVFLIkYsNyQkIjNVIXkqUjtBQSc9J0ZjZGwkIjNwYHFKPUNSPDdGLDckJCIzIjRyWGlmXUAsKEZjZGwkIjMiKjM8X2stJVE1IkYsNyQkIjMjUjp6NkY/PXIoRmNkbCQiM1pIbiVcYCZ6OzVGLDckJCIzKnlkWFxWLWRfKUZjZGwkIjNcOjMpKlsnM0NDKkZjZGw3JCQiM1c3ViFwMEVoQypGY2RsJCIzXzpdWUkqZSYpWylGY2RsNyQkIjNadCU+XlxhTysiRiwkIjNJTHpwLVpsP3hGY2RsNyQkIjMxRVhqbDUjKnk1RiwkIjNzb3kwNGc2UXFGY2RsNyQkIjMpb0ImKWYkUVhkNkYsJCIzRzghb3BcPShvakZjZGw3JCQiM11rW1dNOWRIN0YsJCIzcWktY1xwcCd5JkZjZGw3JCQiM2g4RjgyK08yOEYsJCIzJSk0d1xXKG8nKT0mRmNkbDckJCIzbztgMnMvOylRIkYsJCIzWSUqUSJRUig0JmYlRmNkbDckJCIzYSZSTlZeKFxlOUYsJCIzbXNWTzRsaSg0JUZjZGw3JCQiMyw/RCNwV2pXYCJGLCQiM0NxZCNvMnRxZCRGY2RsNyQkIjNVc29iKW9WSGgiRiwkIjNBVGMkW05VVTAkRmNkbDckJCIzLWtFKlJIQCgqbyJGLCQiM3F2clBxZlJhREZjZGw3JCQiM201RjN2ditrPEYsJCIzUTk6TjR5L3o/RmNkbDckJCIzLS0hcFojKSpbWT1GLCQiMz95VXQhXCp5ZDpGY2RsNyQkIjMkNFJlWXouMSM+RiwkIjN3VHhBaiRwRTQiRmNkbDckJCIzJylSYSNvRk8oKio+RiwkIjN3J3k6JD0qXGwnZkZcW243JCQiMyskPm9xMVU5MiNGLCQiMylSN3VWajtGWCJGXFtuNyQkIjNTJG8leU5hJClcQEYsJCEzLCFlZ1M3Nz1gJEZcW243JCQiM1w8KTNrWyhmQkFGLCQhM00pSCI+dVZYKUgpRlxbbjckJCIzXlUpekczKzJJI0YsJCEzV2BIKCopZSZbUjhGY2RsNyQkIjMjXCI9K2s+M3dCRiwkITN5XCpwW1tmRyY9RmNkbDckJCIzb3l0XTIpKipcWCNGLCQhM0BzVyZ5N0U3VCNGY2RsNyQkIjNERTlUcXErSkRGLCQhMyE0UyNcIWZAXChIRmNkbDckJCIzISpRSXF1YXQzRUYsJCEzVSZmO3N4Q1xlJEZjZGw3JCQiM2UjKkdjWy0jZW8jRiwkITMjWyJHW3FJXUtVRmNkbDckJCIzdSU9RCs6YG12I0YsJCEzLSdmYl82YF4oW0ZjZGw3JCQiMzMsKSplW2MkeSRHRiwkITMhcHAoZSQ0JzMlbyZGY2RsNyQkIjNBJmUqM1ZpVzVIRiwkITMpeV06KXlRMCRcJ0ZjZGw3JCQiM1NeeFAiR2t5KUhGLCQhM00mKUhsSmwmXFooRmNkbDckJCIzMUYnUUJBaj4xJEYsJCEzI3okKlJKdndGZClGY2RsNyQkIjM1KysrYUVmVEpGLCQhM3U4LyMzKysrKyJGLC0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiFGZ2huRmhobi0lK0FYRVNMQUJFTFNHNiRRITYiRl1pbi0lJVZJRVdHNiQ7JCEweiplYEVmVEpGZ15sJCIweiplYEVmVEpGZ15sOyQhJCsiRmdobiRGZmhuRmlobg==plot(V,-Pi..Pi,discont=true);LSUlUExPVEc2JS0lJ0NVUlZFU0c2KDdTNyQkITM1KysrYUVmVEohIzwkIjN1JykpWzs0d2tqJSEjPTckJCEzPHoiPWkkRz1JSkYsJCIzPWhAQzNnVSplJUYvNyQkITNMIj11WkBiLTckRiwkIjNZPDNTb3o8WVhGLzckJCEzUCIqRzttMDQ0SkYsJCIzJ1IqND8kW1xcXCVGLzckJCEzS25MLDY+Jnk0JEYsJCIzcjlgKVwjcGVTV0YvNyQkITMnKnAqSDdubW0zJEYsJCIzISopeUUkXGluJFElRi83JCQhMyVbU1NAXydId0lGLCQiM1gxQU8hZSRSR1ZGLzckJCEzaVAxVUwpZWIxJEYsJCIzVSgpelNfOGVvVUYvNyQkITNLS2lRK1JYYUlGLCQiM1QiSF8jNCRlUj8lRi83JCQhM1YwSCwiZSVRVklGLCQiM2FpPCZSTEtuOCVGLzckJCEzd05eV0QlKSo+LiRGLCQiMyVbISpwJHpja2tTRi83JCQhMyI0VkJNXHA+LSRGLCQiM3FTZyhwJDNvKSpSRi83JCQhMyoqeklKIkh6MSwkRiwkIjNnPGgiPTldOyNSRi83JCQhM3NCIlswdFUkKipIRiwkIjNPKj5ucUhiOCVRRi83JCQhM1FndWpgeVQpKUhGLCQiM01gJykpZlQhPmhQRi83JCQhMydlbSF5PXFceUhGLCQiM0dpX0o7Zi4nbyRGLzckJCEzK1lBZCc9K24nSEYsJCIzK1lPLCQzclBmJEYvNyQkITMhZW8pSEFucWNIRiwkIjMiM1FcJnAncEpeJEYvNyQkITNPKztoWj4zWEhGLCQiM0Z2JVxtN0htVCRGLzckJCEzRmk3Rl8/ek1IRiwkIjNmRSJIJnpbckdMRi83JCQhM3pLQUExQ11CSEYsJCIzJD0jM3I9NWxIS0YvNyQkITNcSVtUJCo+djdIRiwkIjN2XS8sQnEkRzgkRi83JCQhM0VuRVdsXWAsSEYsJCIzWktPYkUkMyRISUYvNyQkITNNcyM9U1VNNypHRiwkIjNPMj4tR0gvS0hGLzckJCEzT1RQbiF6QiwpR0YsJCIzIXkiRzRibSZbI0dGLzckJCEzWSlROl8nSGVvR0YsJCIzKEhZZnA+RDZyI0YvNyQkITMhUWJGRmtPJmVHRiwkIjNyJGY2MnFGLWgjRi83JCQhMylRcDcjUmpvWkdGLCQiMzdVRDYvPFEqXCNGLzckJCEzQyIpKXlSInBaT0dGLCQiMy9nSDVHJVtIUSNGLzckJCEzUURpRnkxXkRHRiwkIjNtJyllXzY9SG5BRi83JCQhMyI+ZGc4RytcIkdGLCQiMzc9dSRleXpROiNGLzckJCEzPCEqKTNZQz5KIUdGLCQiM3N1TT0yPFJFP0YvNyQkITNRRVo1Zk1gI3ojRiwkIjNMY3ZrcyxnNT5GLzckJCEzX2QkKWV0M0IieSNGLCQiM1dJUyk+LWlleSJGLzckJCEzQzlnQF4hKik0eCNGLCQiM08rKzZSRixzO0YvNyQkITNlYEs5TT96ZkZGLCQiMzMuKFxhZl5vYSJGLzckJCEzSUo8bzhsRFxGRiwkIjNgY0c1Ink4J0c5Ri83JCQhM2UwczdmUUNRRkYsJCIzW2l5J3BtVlpJIkYvNyQkITMlKXAsUHdwWkZGRiwkIjNpMz8iKXppZCQ9IkYvNyQkITNkOGolei8waXIjRiwkIjM5LHYyS3IqbzAiRi83JCQhM09vTzxUKVtgcSNGLCQiMy05J0cpXFchSE4qISM+NyQkITMxXz52LG9DJXAjRiwkIjNiM3dJLFMiZTYpRmJ4NyQkITMpZiU+I0dwT0tvI0YsJCIzb3B4NikqKlF6Km9GYng3JCQhMztcND1ZJj5KbiNGLCQiM09tTC03ZCYpKXkmRmJ4NyQkITNDYTRUYVRfaEVGLCQiM3l4J3pMaSc0S1hGYng3JCQhM3csQXkoNGA2bCNGLCQiMyp5Pz9OVU1MVSRGYng3JCQhM19nPUkpUSY0U0VGLCQiMykqW1JGUSk+JmZBRmJ4NyQkITM/T3NSXDxeSEVGLCQiM3UhSHguVz9jOyJGYng3JCQhMz8rKyslPVEiPUVGLCQiM0gzXjRYVkdWOSEjQDdTNyQkITM+KysrMFF5PEVGLCQiM0x4LDxHRVFUSkYsNyQkITMtKFtsJ1EneWpnI0YsJCIzYzhkKCo9dTdJSkYsNyQkITNLPzRVa11YJ2YjRiwkIjNCLmowckplP0pGLDckJCEzRXUnM3QnXEgmZSNGLCQiM3Iyalw4JFssNiRGLDckJCEzTyVbR1EqMzF1REYsJCIzI0ghR1E1aikqKjQkRiw3JCQhM0VZJlFSQCEpR2MjRiwkIjNVaGVdP2dCITQkRiw3JCQhMy1EUlgjSDlEYiNGLCQiM10hKnkpWzdSOjMkRiw3JCQhM3EvVTwiKTR5VERGLCQiMzV1eiEqKXkqKkcyJEYsNyQkITMuZVhIdjBvSURGLCQiM00oKkhRKipbUGtJRiw3JCQhMy9adGJvZGg+REYsJCIzXXZFY1QtSmNJRiw3JCQhMzYnXCF6YVVCM0RGLCQiM11pMlZoUFtbSUYsNyQkITNfbSZwN1Q0IylcI0YsJCIzOCEqMyl6JHoqPi8kRiw3JCQhM1FJRiU9IlEjcFsjRiwkIjMmeUxQRyl5O05JRiw3JCQhM1VcLm1zPWZ2Q0YsJCIzZyxFdllrIylHSUYsNyQkITM7YzNdXDlua0NGLCQiMz41IUc2InpAQklGLDckJCEzZStvMmZZdmFDRiwkIjNKb3lUJ3BoJj1JRiw3JCQhMzckNCE0T0UnSFcjRiwkIjMkUm14JGVwZDhJRiw3JCQhM0xdImVlQ3RIViNGLCQiM0M8OXArOCQpNElGLDckJCEzUyUpKlwtQGA4VSNGLCQiM1tyTiFcRUxnKyRGLDckJCEzJWVcKHo0djE2Q0YsJCIzLW4uNSpHekorJEYsNyQkITMpM0gwaVkjeSpSI0YsJCIzQS9XXmNGZytJRiw3JCQhMyE+PERnVk8hKlEjRiwkIjMpeUNCeFMkcCkqSEYsNyQkITNBNlsnMzNDeVAjRiwkIjNZXkgjSCozRigqSEYsNyQkITM9RyI0KFF3X25CRiwkIjMrQyEqZTUlemsqSEYsNyQkITMlXD9WW2BAa04jRiwkIjNxT2NSQil6aCpIRiw3JCQhM0lRLEM5YSlbTSNGLCQiM3dkZCUqUSJ5aypIRiw3JCQhMztoRU0oPVZbTCNGLCQiM1F1O2E2SUMoKkhGLDckJCEzISoqZXhySSgqUksjRiwkIjMnKkgscTRlZikqSEYsNyQkITNmTHBwXkN6N0JGLCQiM3QrISlRJT5sMCskRiw3JCQhM0U2aWcnb0k9SSNGLCQiM2lgIT1RW11JKyRGLDckJCEzK3l1QjpZQSJII0YsJCIzY2xsW1xsKGYrJEYsNyQkITNTbCJvN1FbJXpBRiwkIjNJYVRBJXk+KTRJRiw3JCQhM1l0dkY2cCcpb0FGLCQiM0crKSlRTygqejhJRiw3JCQhM2FwSVxMKm92RCNGLCQiMyZIPWwjPTVmPUlGLDckJCEzMVMxVCdHSnRDI0YsJCIzJioqXEdUdDJNLSRGLDckJCEzaSRmS1MkKVFoQiNGLCQiM28qXCJvNS89SElGLDckJCEzJT0xJGYzd2dEQUYsJCIzJW8iR2pIXDNOSUYsNyQkITNZclNkViUqZjlBRiwkIjNUXz0pPSFbdFRJRiw3JCQhMyxMJ2UsJnAkUT8jRiwkIjN1KUdDJW9jcFtJRiw3JCQhM2dZJ29waHBEPiNGLCQiMyNlMXlkaWFrMCRGLDckJCEzeXVCJmYkeXIiPSNGLCQiM11VWTNSeU9rSUYsNyQkITMnZXgwREs/MTwjRiwkIjNpeilvLjQhKkcyJEYsNyQkITNlR04yLVpoZkBGLCQiMzlkJ2VqMmA8MyRGLDckJCEzazllKil6O11cQEYsJCIzMzNWKDQzVS00JEYsNyQkITNLKD1FXyw2ejgjRiwkIjMiKnpKInA8ZC41JEYsNyQkITNuYkJkJz1XdjcjRiwkIjMnRzFUYE1NKDRKRiw3JCQhMzc9XipcKTRcO0BGLCQiM1tjLmRJWTA/SkYsNyQkITNUZipHMm02ZjUjRiwkIjMrI2Y9TF9CLTgkRiw3JCQhMyUpKioqKio+dFVYNCNGLCQiM2s4SFpaXVdUSkYsN1M3JCQhMz0rKysyUj4lNCNGLCQiM10oKVtdJnoqUTc/RltbbDckJCEzcV1mIykzUicqZj9GLCQiMyVIdTJ4MW8lZU5GYng3JCQhM1g6OldxMD1JP0YsJCIzLTdPI0hHVFp5J0ZieDckJCEzVyc0J1siNCdvJyo+RiwkIjMnPSMzamI7RV41Ri83JCQhM1UrQFEqZXBIJz5GLCQiMyJ5bWtSQFcvViJGLzckJCEzUjdyI2ZMOCVIPkYsJCIzYF4iKjRJVz0wPUYvNyQkITM5LVxaJFItJCkqPUYsJCIzTydbL1pARF45I0YvNyQkITM3YDxlOSkpM209RiwkIjMtZlUxL2ozJlsjRi83JCQhMyV5WDNfW3RGJD1GLCQiM0ZUWFc6IikqKT5HRi83JCQhM3chKSo9JikqXGMqeiJGLCQiM251KVsvQyRcTEpGLzckJCEzI2YocDYpKWZTbDxGLCQiMyo0R09Laz5FViRGLzckJCEzOGA8OzgoPWB0IkYsJCIzW0gnei4qUi92T0YvNyQkITMmUSdRcm52Vyw8RiwkIjMkZU4sdXlyTSNSRi83JCQhMzMkXCkzV3RWbjtGLCQiMztCMGskPj9rOSVGLzckJCEzPmZVbyI+aVlqIkYsJCIzSWRZJD4kSDtPVkYvNyQkITNCK2JROCMqKltnIkYsJCIzeTlWIW8ueXRbJUYvNyQkITNzIlFeTTozJnA6RiwkIjMuQUMpKm8zaFRZRi83JCQhM2A0VVYkR0YmUjpGLCQiMzFhbldvXDReWkYvNyQkITNmKikqelVTX1ldIkYsJCIzP1Epb0pNKHlhW0YvNyQkITMlZmsycEEjeXQ5RiwkIjM0RCR6XU9EZyNcRi83JCQhMzB0LW5cRiIqUjlGLCQiMyMzPSkqSD1gRilcRi83JCQhM1lKbSF6KjRtMjlGLCQiMzdUa2ckZUZtLCZGLzckJCEzVzNBUHknNFNQIkYsJCIzMjxIKDRSRTwuJkYvNyQkITN5ZVhCaXM1VjhGLCQiM0guOWtHayV6LSZGLzckJCEzLSRwZTskW3g0OEYsJCIzUyI9SnkvKVswXUYvNyQkITNdPCQqPi89OnY3RiwkIjNZSnchZS47RCdcRi83JCQhM1gnSDpxTjddQyJGLCQiM3AxUnpnIz4jNFxGLzckJCEzYjslZiRHNFk3N0YsJCIzYix5WCopKT5hJFtGLzckJCEzczEkKVI8QCQpeTZGLCQiM1t2XC87Ikg9dSVGLzckJCEzaXdKaycpRyRmOSJGLCQiM10sWChHWE1OaiVGLzckJCEzcmcxQyo9LFQ2IkYsJCIzTSVmTGUhKXpLXiVGLzckJCEzcS41Vjt2dnk1RiwkIjMhR3ZgKHBvQmlWRi83JCQhM011IlFXbCoqcC8iRiwkIjNkK3YhKXo9MTZVRi83JCQhMypHIjQ9ZTg0ODVGLCQiM1o2LikpR2h6TFNGLzckJCEzZih5ITM/U2xCKSpGLyQiM1EyWSJSXidIZlFGLzckJCEzN2dpQWgiUXhbKkYvJCIzKSkqWyk9eF93YE9GLzckJCEzYyE9emxebjs8KkYvJCIzUUJuNzxVbFlNRi83JCQhM1UlUjE4aSNHVCkpRi8kIjNuOSpIdSt2akAkRi83JCQhM3lLa0ooKjRGPSYpRi8kIjNhXnpEIio9NXlIRi83JCQhMzVDI2VAdzIsPSlGLyQiM0JjKz1fLk86RkYvNyQkITM9L3EvdmpUYXlGLyQiMyVbWkEjeSNbLFgjRi83JCQhMzlWazIiKilcOF8oRi8kIjM5bHMkKSo0MHU7I0YvNyQkITMheXphZE9UNT4oRi8kIjMlNDh6LCIqNGsoPUYvNyQkITNNJGUrYjhBdilvRi8kIjMoeVI6VjolZis7Ri83JCQhMyd5byxiJVtsUmxGLyQiMyM+XmZrNT5kRiJGLzckJCEzJXBncVY+PSZHaUYvJCIzeVg4OENzUSR5KkZieDckJCEzI29BNClIO3knKmVGLyQiMytsNkAiSHZZYidGYng3JCQhM1tCQCopM3VFemJGLyQiMyQpNHpSdTElNFUkRmJ4NyQkITNYKioqKipmLGIhUV9GLyQiMzlFOSM0IXBBbj9GW1tsN1M3JCQhM3IqKioqKnpRLk1CJkYvJCIzKWYsUDtATTg5JEYsNyQkITNLPjU8eVImR20lRi8kIjM3YSRlbHdfVDMkRiw3JCQhMycqUioqUSgpPlVtVEYvJCIzQXk3WXJkZE1JRiw3JCQhM08qXGJOSEsiM09GLyQiMzlMbU1qS2p6SEYsNyQkITM9XjdCJCo9OVlJRi8kIjMvXT03JSk+ekRIRiw3JCQhMyc9cXpeYEFvWyNGLyQiM2k9KkgqKXAsVShHRiw3JCQhMz09V1MjKj1Fbz5GLyQiMzJQKSpwSChIJkdHRiw3JCQhMzp4XywkUUE4ViJGLyQiMyMqKj5tJD0oPlB5I0YsNyQkITMzNzcwVng9ZygpRmJ4JCIzdmZWKT1AXy11I0YsNyQkITNhK281OC4nXEEkRmJ4JCIzI1FWRWAsdyoqcCNGLDckJCIzVUJwX2s5cW9DRmJ4JCIzLSc0eVxbKXpoRUYsNyQkIjMtNjlSZD1vJFsoRmJ4JCIzIVJWSFxzNTRqI0YsNyQkIjNbSSIpWyk+T0hKIkYvJCIzJzQjM1UiKkc8KmYjRiw3JCQiMytYK3UiUUEpej1GLyQiMydmLHFdam4vZCNGLDckJCIzQmInZTJFQWhVI0YvJCIzdSVvTyd5T3JYREYsNyQkIjNiIUdydClbQEFIRi8kIjM5Ny9uJVJEY18jRiw3JCQiM05VKT5OKzxAXiRGLyQiM0pRISo0VjxmL0RGLDckJCIzIXlqJlt0OSU9LCVGLyQiMyNRKFFXUS82KlsjRiw3JCQiMyNlcigzSilSSmYlRi8kIjMjcChwIVJuKHB0Q0YsNyQkIjM1JHAieXV0bzJeRi8kIjNjI3pCbihcSWlDRiw3JCQiM3koZTc7ZUZBbiZGLyQiM01vPDRQKGVAWCNGLDckJCIzdTRea2dMISk0aUYvJCIzZCY+d0ZJQ1pXI0YsNyQkIjMpUTBqMUgyMngnRi8kIjMiKWVvWjU4QlJDRiw3JCQiMyFmTXdPPiN6JkcoRi8kIjNlaEQsJnAhPk9DRiw3JCQiM2BZJkhyJTNRVHlGLyQiMzpKWSdHJSlSXVYjRiw3JCQiM2o6NXM3OFs9JSlGLyQiM2w9dTsheXZoViNGLDckJCIzazgkNFgnKlszIyopRi8kIjNlI1xhcywwIlJDRiw3JCQiM2FEQUQiej5NWSpGLyQiMyplVU53UDxWVyNGLDckJCIzMkRyZWFbUi01RiwkIjNpKkdrW2pzPlgjRiw3JCQiM10memh3bEpzMCJGLCQiM09PKmVfNFg8WSNGLDckJCIzOD5DSCUzKkc1NkYsJCIzQ25BZkopNE1aI0YsNyQkIjNZQ0BfNS4/cDZGLCQiMzsnM15hXyIqKilbI0YsNyQkIjNyXUBablk4QTdGLCQiMztZKnlNWVFhXSNGLDckJCIzQWwmR0BSYCd5N0YsJCIzXyc9JXpZYWxEREYsNyQkIjM1YzkrZHgnKUg4RiwkIjMheV1kYipbVllERiw3JCQiMzV2UkgmZWVlUSJGLCQiM2dueW5aLSQ+ZCNGLDckJCIzJUcmKlw3ZlQmUTlGLCQiM1tVW3BaK20pZiNGLDckJCIzXzZAUjcwaCRcIkYsJCIzQmRpJTNcRSZIRUYsNyQkIjNnTzRcWy9YWjpGLCQiM08qSHQ6bWZFbSNGLDckJCIzSkIzJz4oZSJRZyJGLCQiMyxzLllqXF4rRkYsNyQkIjNLNj0mUlotImU7RiwkIjNzbURzUilHK3UjRiw3JCQiM3BgX0ZsJD1PciJGLCQiM3FwQD06J29NeSNGLDckJCIzNXAiKilwYnUnbzxGLCQiMyQzdlcnNFBWSEdGLDckJCIzSiNRZiN6YUU+PUYsJCIzKSlbKXpaYDRTKEdGLDckJCIzYSdwamBRW3MoPUYsJCIzcm1MLlRPX0ZIRiw3JCQiMzFQRSF5KSozIkg+RiwkIjNzRSV6NS4tcyhIRiw3JCQiMzFoQ28xS1MlKT5GLCQiM103PSVSSmg6LiRGLDckJCIzUjBRYEhvS1A/RiwkIjM3Iz0vRFQpUiUzJEYsNyQkIjMnKioqKioqKipbK1U0I0YsJCIzek8/RlEhKVJUSkYsN1M3JCQiMysrKytlZmMlNCNGLCQiM3V1YFFhTWAzPEZbW2w3JCQiM2tGJDQuOylRPEBGLCQiM2lZKSpwL0FSJUgjRmJ4NyQkIjM2QCE0bGpYczgjRiwkIjNxaVF0ektfbFVGYng3JCQiM1N6VEtYdWRmQEYsJCIzbVktL1NEbW1rRmJ4NyQkIjNtcVUnUUdkPz0jRiwkIjNtS3FIJXA3OW0pRmJ4NyQkIjMlPiNlbHotVi9BRiwkIjMtLFouYSJcPzMiRi83JCQiMycpKlIocDVIPERBRiwkIjMnejAyWCN6Z3o3Ri83JCQiMyVRKDNvLjJsWUFGLCQiM1dBRUIhKls7IlsiRi83JCQiM3cjbzN6MWopb0FGLCQiMyFcWyFHJyk9LydvIkYvNyQkIjNdMkYhbz4vNUgjRiwkIjNHNjswYExIJyk9Ri83JCQiMzEmKjNPcCF6UEojRiwkIjNnJUc3IlwteigzI0YvNyQkIjNzb25dKj1SUUwjRiwkIjNnbF89LT5CaEFGLzckJCIzcShba044QWtOI0YsJCIzP1l0Jz01IW9eQ0YvNyQkIjNfSy1PMHk0ekJGLCQiMy9jISlbbDleUEVGLzckJCIzQlNfJG8sXTRTI0YsJCIzPydvdU9URjciR0YvNyQkIjNIP1FMPVJ6P0NGLCQiMzEqNEM+M0hVJ0hGLzckJCIzeHcpZWxCIVJXQ0YsJCIzYW02YzJ5MVNKRi83JCQiM0VkJ0hLVHpWWSNGLCQiM3dRKjM3eSdvJEckRi83JCQiM28pMzF4ZEp3WyNGLCQiMyllJjRKdUdUV01GLzckJCIzanhgPiRvOCMzREYsJCIzKydbZidIOCczZSRGLzckJCIzOmpgKzpieklERiwkIjMoZjZsY0RTVHMkRi83JCQiMyU0XkUhZigpSF9ERiwkIjNlWCQqKj0keT9hUUYvNyQkIjMtXFRLUV50dURGLCQiMy0zZGxqSj0kKVJGLzckJCIzYSUpKilSUShRYGYjRiwkIjM7eTVmIio9WiY0JUYvNyQkIjNtI1FIWF1pdmgjRiwkIjNyKik0T19wKik0VUYvNyQkIjM+Iz1qO3ZZMWsjRiwkIjNgWyU9WmosOEslRi83JCQiM1NqTWxjO3VnRUYsJCIzX2w6OmZOLTdXRi83JCQiM095M2MvWlcjbyNGLCQiMyh5dS43UypRLlhGLzckJCIzWi9TcHdnJ1txI0YsJCIzaVFBVk1EWyFmJUYvNyQkIjN2WXEwOjUhb3MjRiwkIjM5dyEpeSJRRiVvWUYvNyQkIjNDMm96Jj5DIVtGRiwkIjMoNDwqWzooSHB0JUYvNyQkIjM7Xl1iPiopZXJGRiwkIjNdR0hOUGYjXCFbRi83JCQiM1NpXyQ+KEd3I3ojRiwkIjM9UVw8YE1wZVtGLzckJCIzIjR5IWYmZXFgIkdGLCQiMyJwKlJZK3NMM1xGLzckJCIzJFxoSFZgY2UkR0YsJCIzIWVSX2RyKkhZXEYvNyQkIjNzLiRcdDNgI2VHRiwkIjNLRVBsPHQvISlcRi83JCQiM0FTbUwpXEUkekdGLCQiMyV6TzwzKW9HL11GLzckJCIzXnlkJVtHYTghSEYsJCIzcVhQQUY9cUBdRi83JCQiM0BqN1pzLypHI0hGLCQiMzo9Kip5Qnh2SV1GLzckJCIzWWJeL2xvVlhIRiwkIjMtUTJeSyVIOy4mRi83JCQiMzVOaHo/PDpuSEYsJCIzPzg6QyYzdFItJkYvNyQkIjMjNGlackhlJCopSEYsJCIzKnpcXiM0W0wyXUYvNyQkIjMuZV0kPSo0UTZJRiwkIjMjej4lZjs0JT0pXEYvNyQkIjMpPkFrNWM8Oy4kRiwkIjNbKXo7O1FULiZcRi83JCQiMycqNGw0YDQiWzAkRiwkIjNAQnE1QSkzWCFcRi83JCQiMyU+aT8lKlJiYjIkRiwkIjNpJykpM1E5M1gmW0YvNyQkIjMtQHAiZkl0dzQkRiwkIjNbbWRlW3FnInolRi83JCQiM2BjXmhrSCUpPUpGLCQiM115RThyWCM+cyVGLzckJCIzNSsrK2FFZlRKRiwkIjMhPUJuJCkzd2tqJUYvLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiIUZqaG9GW2lvLSUrQVhFU0xBQkVMU0c2JFEhNiJGYGlvLSUlVklFV0c2JDskITB6KmVgRWZUSiEjOSQiMHoqZWBFZlRKRmhpbzskITFjZWklZm8ib2lGLCQiMjtvYD0xclU/JCEjOw==Support de courbetotal:=[rho(t),t,t=-Pi..Pi]:asymp1:=[rho(t),t,t=-Pi/6..0]:asymp2:=[rho(t),t,t=-Pi/2..-Pi/6]:asymp3:=[rho(t),t,t=-5*Pi/6.. -5*Pi/6+0.4]:asymp4:=[rho(t),t,t=-5*Pi/6-0.2..-5*Pi/6]:plot([total,asymp1,asymp2,asymp3,asymp4],-2..5,-2..3,color=[red,blue,green,magenta,black],thickness=[2,2,2,2,2],coords=polar);LSUlUExPVEc2KC0lJ0NVUlZFU0c2JTdccDckJCIyRSdleiIqKioqKioqKiohIzwkITNVSDclcGNvPzUlISNGNyQkIjNaLS4lSE4+c0wiRiwkIjNIME5BIj5MSCU9ISM9NyQkIjNZd0F0Ij1XSCQ9RiwkIjMvbHNnTDEmKip6JUY1NyQkIjM8SkNLJDNgJUhCRiwkIjNdJFw5cChmWSt5RjU3JCQiM1lBIyo9VTMnSEckRiwkIjM7P1lQKipmKSpcOEYsNyQkIjMsa1BccTcleUElRiwkIjMrKCkpb2Z0TXchPkYsNyQkIjM4W0hmSSxZPmhGLCQiMyl6YHJ5SSFbOElGLDckJCIzMDNQWmwiRyhIISlGLCQiMyVmN3FGNlJRNyVGLDckJCIzT3ZmUThXayM+IiEjOyQiMzFtZyJSUCJbIlEnRiw3JCQiM3lRLy0jSC9PZiJGVyQiM0JQb3BYUl4rKClGLDckJCIzeHY5WWVQUUtDRlckIjNHUDlFJj1TWk4iRlc3JCQiM3ZvK3V2WWhDTEZXJCIzV2N4PkhNM3E9Rlc3JCQiM2Mlei93PEQ9SCZGVyQiM3EmZV5uK3BnKyRGVzckJCIzI1InPigqUWVIQTghIzokIjMlPkxNOmJIYGUoRlc3JCQhMyhwIVxBIls+XGEjRltwJCEzMTIoKTRGRj11OUZbcDckJCEzUGdAOik0U1ZxJUYsJCEzTzhIIyl5KXpYOyRGLDckJCEzbyZ6b1VGbSVSP0YsJCEzKSpwRGlsQWAhZSJGLDckJCEzZUYlPipbc3hockY1JCEzIXA8Ino9IylbUXJGNTckJCEzS3l0OUZxZVhCRjUkITMjSGQlM2ZhKlEuJEY1NyQkITM5KCo+L0ljNXg5ISM/JCEzWT1oLjVqM15ERmpxNyQkIjNfO2Q5LVJqaTVGNSQiMyNvbEh2ZCJwcURGNTckJCIzWVooKkhjQl5POEY1JCIzRSxjYUUhbzI3JkY1NyQkIjMkNGQjKSkpSGg5KyJGNSQiM0FCdDBRKilReHRGNTckJCEzL0Y1WkcmKT55ZiEjQCQiMyUzXDo7UiU+LDVGLDckJCEzJWZZa2goUnFtPEY1JCIzdSVmMmhPKWUlRyJGLDckJCEzc1JhLkhUR2RWRjUkIjNXOXlTWE0kemUiRiw3JCQhMy9fJFFrdjwpb3hGNSQiMzI0VlkrIjRvIT5GLDckJCEzYXYkXGQ9a0ZSIkYsJCIzMS9TVSJmMmBRI0YsNyQkITNUQCIpeW1VcVdBRiwkIjM/Im9QKj5cSWlIRiw3JCQhMylHKTM1Z2EzdlRGLCQiMyNlS24qb05jYFRGLDckJCEzPy9IYkorbG1lRiwkIjM7WiUpel8hUms6JkYsNyQkITMrMGZCM3FBaCEqRiwkIjNgMFFRS1FLQXFGLDckJCEzJzNXdUAzJ3BWN0ZXJCIzJWZoeEMvdzUpKilGLDckJCEzZXozXSJHS2AiPkZXJCIzI1xuMiozNnInRyJGVzckJCEzZXYxRCMpKSlRJWUjRlckIjM/TndFZ1lOdDtGVzckJCEzVWoqb1hvOXUiUkZXJCIzd3lQbHFgSVZDRlc3JCQhMyk+bSEqW3E5W0MmRlckIjNqX2QpSHRJKTRLRlc3JCQhM0c2eUpxXUIlKXlGVyQiMyVwPChbL0QlUXQlRlc3JCQhM1ctT210OlJdNUZbcCQiMyFIYEd0TyRRWWlGVzckJCEzNys6VSJvaCZvOkZbcCQiM28qeUBYPTAiUSMqRlc3JCQhM11VIiopZnBJJ3lJRltwJCIzTSNwXSJ6YmwmeiJGW3A3JCQhM2goKik0PChvUTVzISM5JCIzKXpiUT05U1o7JUZqeDckJCIzK0pSbCVbNU1jJEZbcCQhM1RzYlwycTZSP0ZbcDckJCIzSXpYRW4ieUx1IkZbcCQhMzc5IlwjKnBhSikpKkZXNyQkIjNFeUZtOCd5ZjoiRltwJCEzWUJUWzYqXDxcJ0ZXNyQkIjNjQSoqbzpHXmQnKUZXJCEzYkZTbV48MjtbRlc3JCQiMyk0d3gnNG95eGRGVyQhMyk+K18yVm5MOiRGVzckJCIzRT0nXGJWc2dNJUZXJCEzYyZIUjguIm9FQkZXNyQkIjNHaGRrOnFFPkhGVyQhMyxcVGk1cnctOkZXNyQkIjNsbShldWhScz8jRlckITNpY3BIRkNjIjQiRlc3JCQiM3dfWilHbkxeXCJGVyQhMyRHMzYpUVgjSCFvRiw3JCQiM1g2PFtfKzVRNkZXJCEzLXN2UE5NXVRaRiw3JCQiMzlNPWhoZHZ6d0YsJCEzJT1pIWZRS1gzRUYsNyQkIjNdJFIlZT93JmUkZUYsJCEzSSpScjJFTkpiIkYsNyQkIjNBTWsiR05QeDAlRiwkITNVXktCPzIwc2JGNTckJCIzdXApPTohKSpwPUlGLCQhMyM+Qmk1V28+TypGanE3JCQiMyJ6RDtMVVNpSyNGLCQiM2lTQFYpPWEocEpGNTckJCIzYTtQKm9FZlkpPUYsJCIzTnIoZSo0TUdMXEY1NyQkIjNvJlspKnkqZi0yOkYsJCIzSTpaRiRcUSlHaEY1NyQkIjNDal5aR0crKj0iRiwkIjNwWXFBKzRdP29GNTckJCIzKTMuIj1JJm87SCpGNSQiMyNcRGc2PmYkKjQoRjU3JCQiM2UkRzlZNiVRZHJGNSQiM3FcQCwoUVd3MihGNTckJCIzMXduRDdIPWJeRjUkIjM3Q15xLyE0cnknRjU3JCQiMzsiPVlTVSwnW09GNSQiM1YpUTdEWnpfTCdGNTckJCIzdCRRRXhBZzNLI0Y1JCIzdSczMncjbylwcCZGNTckJCIzMStYZnB0XGE4RjUkIjMlUScpUlhxOkQsJkY1NyQkIjNDSCMzSWFReFcmISM+JCIzPy4qZT1uLEU9JUY1NyQkIjMqcG1fPyhHT0Q1RmpxJCIzKzw9UG4xcmBMRjU3JCQhMzY5N2x3N3IvS0ZoYGwkIjM/bXZAWVclelkjRjU3JCQhM0MnZlsqUngpKWVVRmhgbCQiMzlBTiZmSkk6aCJGNTckJCEzWFdEdUImcHE4JEZoYGwkIjMtelUkUiZmIkdiKEZoYGw3JCQiMyJHOyo9OidmITQ3Rl9zJCEzdSZlLD9fNUI0I0ZfczckJCIzXV5eUSE+cXBDJkZoYGwkITNdOzFZOzZIKnonRmhgbDckJCIzVVQ2ISlceGJQN0Y1JCEzXmRVaWJccEY3RjU3JCQiM1F4ITMmUSg9JWU/RjUkITNjbXpFUjZUKGYiRjU3JCQiMzlxKDMzbWpdPiRGNSQhM2QsQ0Y+O21LPUY1NyQkIjM7K2s2JnlyISpSJUY1JCEzcGVOJm9XIW9TPUY1NyQkIjNfJj5Mcz5yITRmRjUkITMlR3NxNikzWyVmIkY1NyQkIjNTTSF6P2UqUVV3RjUkITM1aihlUXNzKVw1RjU3JCQiM3U4LyMzKysrKyJGLCQiM287P250Jm8/NSVGLy0lKlRISUNLTkVTU0c2IyIiIy0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiFGZmVsRmdlbC1GJjYlN2duNyQkITNDNV9vLk5fc24hIikkIjNGIjRuKHAjPSwiUkZfZmw3JCQiM241IilbaSIpKjQkUUZqeCQhM1ZTVisuays1QUZqeDckJCIzTF8kXCVcXyVmIj5GangkITN1VSJRIlErTi82Rmp4NyQkIjNVVEwqXEolZng3Rmp4JCEzM3EkKVFXIXp6TihGW3A3JCQiM2UkPSpcKFIoPSVlKkZbcCQhM2NKI29YXTxfXiZGW3A3JCQiMy0ib0I7KSlHQ1InRltwJCEzS0dlLXhRWHNPRltwNyQkIjMxUkVUcW1hJ3olRltwJCEzIUdPaSlwKXA1diNGW3A3JCQiM1pyYVknUmUxPyRGW3AkITNQVzhKKVIib0g9RltwNyQkIjNsLlxiVSIzRlMjRltwJCEzPyI0cERvIykqbzhGW3A3JCQiMzF5JUhVZlhaZyJGW3AkITM1ZzY2QS12IzMqRlc3JCQiMyZHWHNgKT52MDdGW3AkITNxVU15cEc3em5GVzckJCIzUkdbXSllZyZHJSlGVyQhM0VZPCc0JDMpUW8lRlc3JCQiM08qSFd2YVB5WydGVyQhM1VkXik9WlhMYyRGVzckJCIzOURxKHopPk0pRyVGVyQhMyFmbERBKmVNJEgjRlc3JCQiMzpHOmJiNXgyS0ZXJCEzJ2UqZmdiQ1BwO0ZXNyQkIjM3cmgpZUsiKTRkI0ZXJCEzbk1dVFFAaiw4Rlc3JCQiMzk7WS5ETj12QEZXJCEzIzNUUWYjKVtJMiJGVzckJCIzITQmKj4iKXplKXk9RlckITNPRzMielx4IT4hKkYsNyQkIjMjKXAlKUhVRCcqWztGVyQhMysob01pQz84cChGLDckJCIzc3ksPCh6ODhaIkZXJCEzIz5YXjdVbGBtJ0YsNyQkIjM0aVA+MFQhZUsiRlckITNqYnJcJXA3XiNlRiw3JCQiM2h6JSllTVlUPzdGVyQhM0ghUjxSJ0drO19GLDckJCIzTlBDPEchPTQ3IkZXJCEzeTRuJillNU1VWUYsNyQkIjNDLCpbOkVLbi4iRlckITNVbkxHSkFmY1RGLDckJCIzJz1bWCUqND9DbipGLCQhMyM+KSopUSEpUiNldiRGLDckJCIzdFVcJjRINzM3KkYsJCEzSUBfVzQ7KHlWJEYsNyQkIjNoPCRIPHhCXGEpRiwkITMneWd2QG5faDUkRiw3JCQiM0FNQDVfdFQ4IilGLCQhM0FhI2ZJVTB5JkdGLDckJCIzcVBjdyRcTmFtKEYsJCEzPixzZCQpUkErRUYsNyQkIjNRcEdcdSwlKTR0RiwkITNVTTFTelYqZlIjRiw3JCQiM0MkbzBqJzQ+ZHBGLCQhMyUpcDBmSFlyJD4jRiw3JCQiM09uYCF6PCZwX21GLCQhM1EkXGg+SzgkPj9GLDckJCIzRz12XmwzLmpqRiwkITNZVWB6RzVvYD1GLDckJCIzIlt2YGNTKyE+aEYsJCEzIVtnT1dmJVI5PEYsNyQkIjNRdWUoKTRuVHdlRiwkITNNVWdXIykqM2lkIkYsNyQkIjNcKSlbektsUFdjRiwkITMzMHkraGNMVzlGLDckJCIzQ2lnTlQyLGRhRiwkITNUSGFdLCo0IlE4Riw3JCQiM1lyciopZTpEb19GLCQhMzRGXCRvMG44QiJGLDckJCIzIzQpKikpKVtcXiczJkYsJCEzRCVSbUVWJiopRzZGLDckJCIzKVF6W2QhZlM/XEYsJCEzNDdUVyYqR2BONUYsNyQkIjMvXSdIUFYiZXBaRiwkITNWXUZSNFtWNSYqRjU3JCQiM3pkXyFITSNSN1lGLCQhMyg0bicpZi5hSmopRjU3JCQiM2UjKW8uKVEsJnpXRiwkITNtIT0wZVdLVyp5RjU3JCQiM1dQXSgpKXA/Yk0lRiwkITNFMCFcOFRaRjooRjU3JCQiM1JIL3c2ZWJJVUYsJCEzXGsnPlxuKyI+bEY1NyQkIjM5cWJASFxGNlRGLCQhM2F5LmVdYm9rZUY1NyQkIjM2Yid5N2xfWSslRiwkITMzOl5oIWUwRUcmRjU3JCQiMzFgPSMqM19hKSpRRiwkITMkZSEpKj5oJEhqcSVGNTckJCIzKSpwKXoqNFJuKnokRiwkITN3YUV1Yz5Kc1RGNTckJCIzL0h2LnY2IzRxJEYsJCEzWkkoKipcP24/ayRGNTckJCIzVjlHMXpLMTVPRiwkITNxQlNZcDFDZEpGNTckJCIzXCNvb2k/VjZfJEYsJCEzKVxMMnQoSCNlbyNGNTckJCIzNTApZnlxaW1WJEYsJCEzTF9aekE3K1RBRjU3JCQiM21TKSk+Yj4xaUxGLCQhM3dGUjgvTikzJj1GNTckJCIzbSEzPSpwXikpektGLCQhMydwd3IyZSdIQzlGNTckJCIzNXgpPl0qcD40S0YsJCEzNylcOV85Ij5nNUY1NyQkIjNbRFxpTThjT0pGLCQhM2VXODNHJD0rKm9GaGBsNyQkIjMvOjtvIylvXnBJRiwkITMjUVA9TD9bQVwkRmhgbDckJCIiJEZoZWwkRmhlbEZoZWxGXGVsLUZhZWw2JkZjZWxGZ2VsRmdlbEZkZWwtRiY2JTdnbjckJCIzN2o+SiVHTTUwI0YvJCIyNyR6KmUqKioqKioqKipGLDckJCEzU0hsW2dcI3lRI0ZoYGwkIjNJS1l3QC8jZi8iRiw3JCQhMylRM3EqKT1JK2slRmhgbCQiM1lidSR5JXlMJzMiRiw3JCQhM2lhdThiVTx0dEZoYGwkIjNUY28qcF5dQjgiRiw3JCQhM01GYmJDNWhNNUY1JCIzNUldSVd2Sno2Riw3JCQhMzc0YU87KFxNTiJGNSQiMyEpKVxSeixtbkEiRiw3JCQhM3kuejNHN1BxO0Y1JCIzKVxZKlEnZVI5RiJGLDckJCEzNF12dyUqeTRAP0Y1JCIzJz4nM3BvJVslPThGLDckJCEzV2MpR2c5QSI0Q0Y1JCIzdy5FPj4pUnpPIkYsNyQkITNfL0dYcSVIRyNHRjUkIjMhb1siZWVyQj05Riw3JCQhM0MleTI0OS8heUtGNSQiM1tqXE15RTJyOUYsNyQkITMmZnVNXi5WX3EkRjUkIjNsbDB2TXVoPTpGLDckJCEzLz5WOnJ5XzxVRjUkIjNPZzpYKVx3TGQiRiw3JCQhM3cwRkhZQVluWkY1JCIzZiRRIkgleS0pSDtGLDckJCEzXyFbIj5vNF5MYEY1JCIzNUg8JTNZJm8mbyJGLDckJCEzMSdIX0crOC8pZUY1JCIzIVEsYyRcKlF5dCJGLDckJCEzd1QpbyF5ZmR1bEY1JCIzXCNlPkFudzwhPUYsNyQkITNOMzA1OyIpei1zRjUkIjMhUjs2NWJUeCY9Riw3JCQhM111cycpZWwmUil6RjUkIjNUQiJ5LzRfXiM+Riw3JCQhM29gMXlXQWNDKClGNSQiMztsaWt0NDcoKT5GLDckJCEzUXZaWjojKUcmZipGNSQiMyNmQWdGI2UpeTAjRiw3JCQhMy1IdjUrP2xbNUYsJCIzJVs6I3AnWyhHR0BGLDckJCEzZ3YkW1coUXlbNkYsJCIzISpmWTVdWkYwQUYsNyQkITMvSEJoTUgmeUMiRiwkIjMxSyEpKT1rWiZ6QUYsNyQkITNzZHleNyJIS08iRiwkIjNVUmpKWkora0JGLDckJCEzOTd4WDIrZSRcIkYsJCIzb3BPJTNfaHJYI0YsNyQkITMqSFYnNFlRKW9oIkYsJCIzZGxIaytoU1ZERiw3JCQhMykqPmA7L1VyaDxGLCQiM3QiUjh0P0pGayNGLDckJCEzdSVcLzFzU2UjPkYsJCIzQ3lHOj5ENmBGRiw3JCQhMyoqeTIjPXJhRzUjRiwkIjNDZDsnKnkmKioqcEdGLDckJCEza2AjR1kvMkBII0YsJCIzUU0yUz9NIkgqSEYsNyQkITNycSo+RGAmZkVERiwkIjM5Ukk3IWYrRzkkRiw3JCQhM0MiKXluWmg+akZGLCQiM3VSRHI+NiY9SCRGLDckJCEzKT4jPlVeb09bSUYsJCIzMWFFJFJkdSJwTUYsNyQkITMuKFxALC07PU0kRiwkIjNrcER5eDFhXE9GLDckJCEzKVJJLnBNaCU0UEYsJCIzR00iPipwJm9KKFFGLDckJCEzeW8hM2J4UjM2JUYsJCIzTyVlVj5SSl02JUYsNyQkITN5UHY0QCtVLllGLCQiM0BUJ1FzVjwlNFdGLDckJCEzUS8ieUY8dCR5XkYsJCIzUXZSKSlHU2JdWkYsNyQkITNGUShcLihvUjdmRiwkIjNndSIzIno4TSQ9JkYsNyQkITNhVzEuQnM3JnonRiwkIjM2ayk0TT1gNXEmRiw3JCQhMyc0aEkkSG8kUiZ6RiwkIjNhXGdfIWVMeFAnRiw3JCQhM1ktLChvZUkjKVsqRiwkIjNDIjNwNSEqRzBGKEYsNyQkITNUKzZvJilvVFY2RlckIjM3O1grQScpKSkqUilGLDckJCEzaWQubyYqRz14OUZXJCIzSGM+XlgqKUhMNUZXNyQkITM5Xm9yOChmSyg+RlckIjNWU2UlXC4pPj84Rlc3JCQhMz1Tb28uOGw7SUZXJCIzRSUqZVl4RzFCPkZXNyQkITNAI1IjeUouKzBTRlckIjNlO0ZdZGkpUVwjRlc3JCQhMzRWP1Q8KVFBImZGVyQiM0krbU04b0AmZiRGVzckJCEzNTBnWHRMI1IiekZXJCIzNSQqUlkkMyUpNHYlRlc3JCQhMzNzclMlSCJvIj4iRltwJCIzQWIraCtPOWlxRlc3JCQhM0spM2JAOlk+ZiJGW3AkIjMnM3prYVM8SlAqRlc3JCQhM3lwT01rO1gjUiNGW3AkIjN5Uj9gcSEpWypSIkZbcDckJCEzZ18wc0xdJUg+JEZbcCQiMzMpM0JRQWI7Jz1GW3A3JCQhMylbQWslbyY+UnolRltwJCIzQ2M1VG8uKWZ5I0ZbcDckJCEzIUdkQ20leilbUidGW3AkIjMzRUg3OzRJNVBGW3A3JCQhMz9iIXkiKlE9b2YqRltwJCIzb0tRVU90JCplYkZbcDckJCEzJ3lyPT1kZi0jPkZqeCQiM1kkKT1VWk9bNTZGanhGXGZsRlxlbC1GYWVsNiZGY2VsRmdlbEZkZWxGZ2VsLUYmNiU3Z243JCQiMyopR1E3ITMqRy5WISIoJCIzQW05dzNeXSVbI0ZiW283JCQhM0xMJjMqPkB5VThGangkITNhZF5fKjNOdXYoRltwNyQkITNuTG1UIVEhKTNyJ0ZbcCQhMy9LI1JiMTElelFGW3A3JCQhMzcqZnVRTioqPVolRltwJCEzYXdeKD1MR25lI0ZbcDckJCEzc3EpeSZcIzNDTiRGW3AkITMpPUAjNDAlKVFTPkZbcDckJCEzNygpKT5GJmYiSEIjRltwJCEzRzY1PF1qLyVIIkZbcDckJCEzd3lxXTQnb0puIkZbcCQhM3U8OSNlIT50MygqRlc3JCQhMyhcVm8keSk9TTYiRltwJCEzc1QrOiFmZHBaJ0ZXNyQkITMlKSopcGonSDthTClGVyQhMyczayR5SnctaFtGVzckJCEzJTRUUERLJ2ZPYkZXJCEzUXckcG0jPSxYS0ZXNyQkITNZYHZvdiFScjglRlckITMqUkFfVng8cFYjRlc3JCQhM2FzY2clXChHa0dGVyQhM0l5NFdfNyQ9cSJGVzckJCEzSVwpKVFhdGQkPSNGVyQhM28oM2tLazonMzhGVzckJCEzISk0ZSVlOSY0NzlGVyQhMzJBIypcNSNmc2kpRiw3JCQhM0dwKSpmc3kyTDVGVyQhM18/OUpjKD5UVidGLDckJCEzQyJcK2EjeUEoNClGLCQhMyshUkRVWjYnUl5GLDckJCEzI0gtQjo/PyE0bkYsJCEzJmY8cHhzRk1MJUYsNyQkITM9KDRHKDRfeXBjRiwkITNfX1s1bCZlJUdQRiw3JCQhM1NObmE7KUdPJ1tGLCQhM1dFTTA5QHlkS0YsNyQkITMybnEkXC40M0MlRiwkITMlKmZlQEtcJ0cqR0YsNyQkITNdZ3d0USgzM3QkRiwkITMrUm03Qig+R2YjRiw3JCQhMykpKkd6PVZjOk8kRiwkITNxPzcmKlEkM1lQI0YsNyQkITNeIlxUUzAvSiwkRiwkITNvSHcvOCNvdzsjRiw3JCQhMyRvYEpRdVUlPUZGLCQhM1NgI1J3aVo7Kj5GLDckJCEzTWBbLihlJlF2Q0YsJCEzPTVOKVFORmIlPUYsNyQkITNBbEQlKTNvZiNHI0YsJCEzZVR6XXYrKClHPEYsNyQkITNPaCdIbzI0OjMjRiwkITNCdCRvJSlvJkgxO0YsNyQkITNkJVIlWyVwKio0JD5GLCQhM09dQl9oYyJRXiJGLDckJCEzI0d1JSpvYE5ceCJGLCQhM1tILmYqeS9yVCJGLDckJCEzdSdmI0h6O0JeO0YsJCEzVEhwcFRadFI4Riw3JCQhM3RBPms6XnVHOkYsJCEzd2Y1JlIqKXpCRSJGLDckJCEzb0QuJylmTjxCOUYsJCEza3VsI1E1LF0+IkYsNyQkITNaKlI4bihSJUhLIkYsJCEzYlFvIzM8Oy44IkYsNyQkITN5QnZSQm1vUTdGLCQhMyU+dCFlIT40YDIiRiw3JCQhM1MocHZoJ2Y3YjZGLCQhM3h0LGlrZzQ/NUYsNyQkITM/ZXpCJFI6YTIiRiwkITNRYCkzI0dyO24nKkY1NyQkITNPSidcPF1NNywiRiwkITMlKkgkM25HcjpCKkY1NyQkITMpKjNkYFA7cG4lKkY1JCEzZWJ0KSpIdzMpeSlGNTckJCEzLSpcOChHZzhcKSlGNSQhM2t2MWhlVzxjJClGNTckJCEzQylHemwjSCdlRylGNSQhM2tEV2lmJHptJnpGNTckJCEzV0ElSHcqSFN3eEY1JCEzVSslKVFnWWcqZShGNTckJCEzKT1ndWYsUXhDKEY1JCEzLGUjcF1jcUA/KEY1NyQkITMieWFIRGBrRyFvRjUkITMpXHElb3k/TnFvRjU3JCQhMyE0LmpMTjtsTidGNSQhM2V1QC9uMVhKbEY1NyQkITNvJDRxJXBsWXZmRjUkITMyZU09a3Ekb0InRjU3JCQhMydcI3lSZHdCI2UmRjUkITNZdjw+K2M1RmZGNTckJCEzNF0jPTFIdkZCJkY1JCEzS1FVO0grWFljRjU3JCQhM11DWCFcMjtyKVtGNSQhM2U/KD42LydIamBGNTckJCEzLz9mUm5qN25YRjUkITM7P1w9PWtyJjQmRjU3JCQhMz0iZU0oZWx1XFVGNSQhM2olM0pAL3hYI1tGNTckJCEzXSsrZEYmKSopZlJGNSQhM09KemJKI0g5ZCVGNTckJCEzQ3ppYXMhRyV5T0Y1JCEzRyNIPl10MytLJUY1NyQkITNtTWFxUSMzS1QkRjUkITMjPldiYS5RdjIlRjU3JCQhMzNXUG1KLyU0PSRGNSQhM1NXdE9lITQuJ1FGNTckJCEzKlwhKXlOImVPRkhGNSQhM1AoekU5ejp1aCRGNTckJCEzKDMkSFtBMUo2RkY1JCEzZj5iNSwkb19TJEY1NyQkITNtTjYkW0FlOVwjRjUkITNTP24jUmgpKVI9JEY1NyQkITN3YiwmbypmaCFII0Y1JCEzY3UuV2M4aHdIRjU3JCQhMzFmOmo+WWslMyNGNSQhMykpeTdLR2hBZUZGNUZcZWwtRmFlbDYmRmNlbEZkZWxGZ2VsRmRlbC1GJjYlN2duNyQkIjNrJCk+P1ZhLk1CRiwkIjNiKVt3LCx6IUd5RjU3JCQiM3c/YDVaZ0d4QkYsJCIzITMmUlZdJypmKTMpRjU3JCQiMz5TQltOIj1rVCNGLCQiM3U1OGgmelhUSylGNTckJCIzTSVRNjlqL0FZI0YsJCIzI2YoPTBnO2EqZilGNTckJCIzbGVMIilbWks1REYsJCIzISopcE1MaEsoKSkpKUY1NyQkIjNvN3BLW1NRZ0RGLCQiMzFlLyEzaDgkKj0qRjU3JCQiMzU5Rkw1aicpM0VGLCQiM0U/VmZSJm8sWypGNTckJCIzRWpta1QoPThtI0YsJCIzTUR4Lio9ZVh6KkY1NyQkIjMhMygpeW1mYCI9RkYsJCIzKClIaWFMJylbODVGLDckJCIzJyo0KmYlMypHd3gjRiwkIjNlRl88dWsxXDVGLDckJCIzLD5wIkgzJyk+JUdGLCQiM296Yjt6UV8oMyJGLDckJCIzK0c1L0YiZTohSEYsJCIzSFhYRUJdM0I2Riw3JCQiM3VaNEghKnA3c0hGLCQiM18oKj1MKjRtXjsiRiw3JCQiM3cpcDxAW1RxLyRGLCQiMydSbUJQUCh5NDdGLDckJCIzQiUpKlslMy1WQkpGLCQiM0cxX3VKWEJiN0YsNyQkIjNbdyVmZHElbyc+JEYsJCIzaS5GN10lcCgpSCJGLDckJCIzXyQpKm9qYWQhKkckRiwkIjNfSW9pYkhnYDhGLDckJCIzeU5eX0diP3NMRiwkIjM9NCcpcCEqRyFIUyJGLDckJCIza24mW0RAYl5aJEYsJCIzR1RrYCY0c1FZIkYsNyQkIjMlM2NMZlFPQ2QkRiwkIjMpUm1SY2o6OV8iRiw3JCQiMyFcRUgxL1RsbyRGLCQiMysnKj0lSCkzJCkpZSJGLDckJCIzKipHR3VlSDouUUYsJCIzK3RpPDdXa2Q7Riw3JCQiMyd5cz8heUYyTVJGLCQiMy8ubCpRSDNbdCJGLDckJCIzdUdSTTwtZ2pTRiwkIjNeUCl6Knk/MTY9Riw3JCQiMyVSQ15uJD1hOVVGLCQiM2FAeE1sJD4pKio9Riw3JCQiM115KGYkZj1IJlElRiwkIjNDKHluL0AtLCsjRiw3JCQiMy01YWZcPTRaWEYsJCIzJ1ttRVskKT5dNCNGLDckJCIzJno/bG9JWXZ0JUYsJCIzY3EvMG5ZaTFBRiw3JCQiM09wMVl3UCZSJlxGLCQiMypvTikpM1UkSExCRiw3JCQiMysnKm89XidwISk9JkYsJCIzbWk/KT14dCxaI0YsNyQkIjNhKlIqelVkPlJhRiwkIjNEJlt3PC5Wb2gjRiw3JCQiM08qcFxPQChcXmRGLCQiMyF6Wi4qUlovKnojRiw3JCQiMyU0OVdnZk95MSdGLCQiM180InAnKTM1TSlIRiw3JCQiMzcqej8nbytqXWtGLCQiM3NwSCpmTCZHMUtGLDckJCIzY3V0KFs1NGglb0YsJCIzJlxBN2g1S2pWJEYsNyQkIjNHYXRRM0hlVnRGLCQiM3MkeT8iMzJYRFBGLDckJCIzTTY9YyNmPCopKXlGLCQiM2hKRSFmSzhALyVGLDckJCIzeWpCLHFeJTNjKUYsJCIzKlJ1KT42OCg+ViVGLDckJCIzSy5gKlJCSiNbJCpGLCQiMy0tVUBvNFopKVtGLDckJCIzS3lSZC1LdE41RlckIjNJPzFWWEg0dGFGLDckJCIzUzxwRmAxYGQ2RlckIjNjIm84ay5mI3loRiw3JCQiMygqKWZPIzNNJ3pKIkZXJCIzJG9yPklPY2w1KEYsNyQkIjNlbkYmPk5WNWAiRlckIjM5KFw8bjhAKVEkKUYsNyQkIjNhcVtzPyo0PyE9RlckIjM3JFFDKTQ1OjAqKkYsNyQkIjMpRyMpeig0Vil5RSNGVyQiM3VLOUhYJzMoZjdGVzckJCIzJz5jPiR5bm9oSEZXJCIzL1Vwcz5jWmc7Rlc3JCQiMyd6dCopNENzSlUlRlckIjN0Vm5WRC5bL0RGVzckJCIzcEtnSCYpW2wzZUZXJCIzJVw/LHlCJFwvTEZXNyQkIjNPJ2UzKiozNUxbKUZXJCIzJT4lKWUncDMiKVtbRlc3JCQiM1MicF5iUCsiSDZGW3AkIjNzIlFuQDMhKilwa0ZXNyQkIjNZXjo+dVVqIXAiRltwJCIzUiJvSyRbVSc+cipGVzckJCIzbyRIbC13bEBEI0ZbcCQiMyNHJ1JZPycqUiZIIkZbcDckJCIzV1RrUkBqQXZMRltwJCIzJzM3UEl5LFElPkZbcDckJCIzOTZzdnVjRylcJUZbcCQiMzlyRUZGPT8jZiNGW3A3JCQiMyIpKWU2SjsuV3UnRltwJCIza2t4OCp5KioqKSlRRltwNyQkIjNJXE4oei0/MCoqKUZbcCQiMy9nbHd5bXomPSZGW3A3JCQiMzFbOXczYEZbOEZqeCQiMyF5MF4kZSQqUXp4RltwNyQkIjNDKVJuLzBYZnAjRmp4JCIzUW0lW2BcO2diIkZqeEZfW29GXGVsLUZhZWw2JkZjZWxGZ2VsRmdlbEZnZWwtJSVWSUVXRzYkOyRGanFGZmVsJCIjXUZmZWw7RmRgcSQiI0lGZmVsEn bleu la partie asymptotique correspondant \340 -Pi/6 \340 droite (courbe au dessus? voir sens du vecteur v(-Pi/6))En vert la partie asymptotique correspondant \340 -Pi/6 \340 gauche (courbe en dessous voir sens du vecteur v(-Pi/6))En magenta la partie asymptotique correspondant \340 -5Pi/6 \340 droite (courbe en dessous voir sens du vecteur v(-5Pi/6))En noir la partie asymptotique correspondant \340 -5Pi/6 \340 gauche (courbe au dessus voir sens du vecteur v(-5Pi/6))