Exercice 2 On d\351fnit la param\351trisation, puis on construit le support partiel et sir la totalit\351 des param\350tresOn d\351fnit la param\351trisation, puis on construit le support partiel et sir la totalit\351 des param\350tresrestart;x:=t->t/(t^2-1);y:=t->t^2/(t-1);NiM+SSJ4RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiY5JCIiIiwmKiRGLSIiI0YuISIiRi5GMkYlRiVGJQ==NiM+SSJ5RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiY5JCIiIywmRi0iIiIhIiJGMEYxRiVGJUYltotal:=[x(t),y(t),t=-infinity..infinity]: plot(total);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdqczckJCEzN0hVWGdKaDZvISNAJCEzVUctUSNRIzNuOSEjOTckJCEzYVZxT0dYS2k4ISM/JCEzMi0tNThAVUl0ISM6NyQkITNZIVxlS2AiXFY/RjMkITN3MUpWbGdpJClbRjY3JCQhM19SVjB4V21DRkYzJCEzPU5YJikqM0otbSRGNjckJCEzSyIqcDgxXSVlUyRGMyQhMylSZm1aInA+RUhGNjckJCEzMS0iW3B3TXEzJUYzJCEzLWJ5NVNLJW9WI0Y2NyQkITNva0wuMWZCb1pGMyQhMzciSDYqM29JKDMjRjY3JCQhM0d4JVErS10lXGFGMyQhMy9SMEZjaDpEPUY2NyQkITN0I1JLZCEqejE4J0YzJCEzSSJleScpb2k3aSJGNjckJCEzVSVwQytjRT4ib0YzJCEzVXBMPVwjXCJlOUY2NyQkITNZX04pKnpAPiRcKEYzJCEzVVxoQDVTcEM4RjY3JCQhM2VNSyFIIip5VzwpRjMkITNvYSVHQ1EjWzg3RjY3JCQhMydReSk9MSUpeWIpKUYzJCEzcy9XJUdFIlE+NkY2NyQkITNJKDNCdUlBcmAqRjMkITNccUVwUVRzUTVGNjckJCEzYz5NWHcjWz0tIiEjPiQhMyk+KlxHJXpAIylvKiEjOzckJCEzaWZZY25yKSoqMyJGYHAkITNbJFt3OSF6ZXchKkZjcDckJCEzJWU1cmBDdWlBIkZgcCQhM0dQJjR3LT9zMClGY3A3JCQhM29mXkIzXWRpOEZgcCQhMy9YPUNaPXZUc0ZjcDckJCEzaV5jcl00KikpXCJGYHAkITNrdlhKMFdkdWxGY3A3JCQhMyVwNUN6Y0JfaiJGYHAkITM+WTtCP11oPWdGY3A3JCQhMzNVYUY1XSV6IT5GYHAkITMiW1kxIzQrLVheRmNwNyQkITM7LW55Qzp2IT0jRmBwJCEzdythZSMzKSkpKlslRmNwNyQkITNDIipcUDhic2JFRmBwJCEzL1paNSdbKW9xT0ZjcDckJCEzISlwM1g3JGU1OCRGYHAkITMvQlhUMCVwKio0JEZjcDckJCEzMyJIMWhVOW9nJEZgcCQhM2ElSFVPcDMnekVGY3A3JCQhMyUqM19iZiZlSTMlRmBwJCEzeVBJZCVIUHJOI0ZjcDckJCEzMSkpKXBYJVI9TGlGYHAkITM+Sl8iSCQ9UDs6RmNwNyQkITNaO1FrW3MjXFQpRmBwJCEzVS49bU1CVi82RmNwNyQkITMhKWUoXDQnKXo0MSIhIz0kITMiW1pDSmJXXmkpISM8NyQkITNbJlFeMiZbN243Rmh0JCEzXnVMQ0gjSHY3KEZbdTckJCEzeSpRWEZkWVFbIkZodCQhMz5VOidST0U4LCdGW3U3JCQhMzhFOVghcEtAciJGaHQkITNFUClwbTJcKVxeRlt1NyQkITMmbyEqKnpRQGdXPkZodCQhM28xXEgtPi4pWyVGW3U3JCQhM3U5O3gmUWInKj0jRmh0JCEzYyYqZkR0c1RcUkZbdTckJCEzRlZgPWNrPTZDRmh0JCEzKWYpSGIqKil5PWMkRlt1NyQkITNdRyJwWy07eW0jRmh0JCEzX3U5ST4uYSk+JEZbdTckJCEzL0BLLSF6NC0nSEZodCQhMzEhKm9CaHIjcCdHRlt1NyQkITN6XG5UTWskXEokRmh0JCEzWTcqR1ZaPidcREZbdTckJCEzc3dnXCVcVXFzJEZodCQhM3ciUlcmZSZwUUUjRlt1NyQkITNLSyJ5eUMkKTNSJUZodCQhMy0hPikzbFAneSM+Rlt1NyQkITMlKTNLJipvekMrX0ZodCQhM1V3T3pjUk9aO0ZbdTckJCEzI1JdRnAhKVxNcSdGaHQkITNPIVJbTnomW0Y4Rlt1NyQkITNRKTQ2XXN3RXUoRmh0JCEzKXBtXisoenUpPSJGW3U3JCQhM1MleidIQHVLSiMqRmh0JCEzXyMqNHNcXD1fNUZbdTckJCEzTzMtb3AnUnA9IkZbdSQhM29NU2s6Ij5NMCpGaHQ3JCQhM1I5VTZuUTI3PEZbdSQhM29CbGhuYilIaShGaHQ3JCQhM2chPlQ+Sj0pM0FGW3UkITNtSFRkS2QieSZwRmh0NyQkITNZTTk/JVJPKz0kRlt1JCEzPkBkT0ZaWy9qRmh0NyQkITNwWlpnPTZ1RlRGW3UkITNTOmRMcXJvIylmRmh0NyQkITNbUVteZ2BiaWZGW3UkITMpZSgqcDhNIVJrY0ZodDckJCEzZ0kjZiRSU3BCeEZbdSQhM24wIlEmRyo+bV0mRmh0NyQkITNYMjM9dVJhLzZGY3AkITNXWFR2Yl0hKVxgRmh0NyQkITM5KUhsNEhrRFQiRmNwJCEzSUZtUyYpXHdyX0ZodDckJCEzO2ElSDZuOmgnPkZjcCQhM2slcChwKHp1Uj4mRmh0NyQkITNVV1xtR2RrYEtGY3AkITMnZnFMZUlRazYmRmh0NyQkITNoTyZcLShRWzQnKkZjcCQhM2pvWEwsJWYiUl1GaHQ3JCQiMzNUWVViKTMpcCEqRmNwJCEzQ2E8ayQpZSEpZVxGaHQ3JCQiMyE0QnVROVcqZUlGY3AkITN3UkI/Uzx1eVtGaHQ3JCQiMzw1XTMqMyNlSj1GY3AkITMneiEpbzdwciopeiVGaHQ3JCQiMyE9LTc/cXRHSSJGY3AkITMhKXlMJypmMF0+WkZodDckJCIzVCplTiVSRC4yIylGW3UkITNXZF1AQFtaaFhGaHQ3JCQiM3lZU0p4cSYzJmZGW3UkITM+PltFVV9xL1dGaHQ3JCQiMyM9aEQhMzkhcHkkRlt1JCEzNVUoPURtMV40JUZodDckJCIzQjpfVGhtYE5GRlt1JCEzYXNoOyU9cDV6JEZodDckJCIzXSFlL0M3cicpcCJGW3UkITNCKSk9VSlmODg/JEZodDckJCIzT0Zjdjg7MyE9IkZbdSQhM25IIVJgWUsiUkVGaHQ3JCQiMyEqKSlbPFNqQXhuRmh0JCEzaSQpUlAkcFRUcCJGaHQ3JCQiMy0/IjReQ2hCJlJGaHQkITNZX01RIz47PScqKUZgcDckJCIzKSlRPUEqUUR6KnlGMyQhM1twYSopelgyKT0nISNBNyQkITMwK1BaKipHL008Rmh0JCEzQkNRMGIpeVBUJEZgcDckJCEzMnpyTHciPVQiUkZodCQhM10jKiplcD9LYCI9Rmh0NyQkITMxeCZIYC86N2onRmh0JCEzTSIqR15oPEBfXEZodDckJCEzdDYmUSYqXGJROCJGW3UkITNeWCgqb0g2N0A3Rlt1NyQkITNTPjgvXzdgKGYiRlt1JCEzW1AxJCpvJEdtLiNGW3U3JCQhMzl6OSd6LV0nb0NGW3UkITNzLnUhPSI0bXBPRlt1NyQkITMxO3E8Qlt2I0ckRlt1JCEzV0UmeWdQWlRDJkZbdTckJCEzPzNFJmYhMzNyWkZbdSQhMyU+c2gnPjhobiIpRlt1NyQkITMsJ3BAW2lEOzUnRlt1JCEzczMycnknSC0zIkZjcDckJCEzP0NrQVdGSyRRKUZbdSQhMylcLm02ITMlUmAiRmNwNyQkITM5ZV0vXScqKnAtIkZjcCQhMzNeRFhDZScqND5GY3A3JCQhM09mQVxEYSozSyJGY3AkITNnKCk9dkwwWCdcI0ZjcDckJCEzOGZFV1p2QVU9RmNwJCEzJW9YU294NXlgJEZjcDckJCEzNkwiKTMqUmk+LSRGY3AkITNtLUxkdiN6ZiplRmNwNyQkITN2OnE+QHFgVygpRmNwJCEzK3EmXFFyeVJ0IkY2NyQkIjM+OSZlaipSTyw1RjYkIjNcelc7SzB6PD9GNjckJCIzbSgpZT1wLSNwPyRGY3AkIjNNNS5ueTohZWMnRmNwNyQkIjNKRzk8JSo0PTw+RmNwJCIzIVxaMVooZWwoKVJGY3A3JCQiM3k2bjskKXlFcjhGY3AkIjNbZiRbS3VmcipHRmNwNyQkIjMhNFR4KCkpM3BwNUZjcCQiMy9cIkhGOExgSCNGY3A3JCQiMyllVUtsM1dReSlGW3UkIjM1KCozeCEpWy85PkZjcDckJCIzYVRbWERDKj5ZKEZbdSQiM2d3OVVHbSo0bCJGY3A3JCQiMyFmMWgpZjMlenAlRlt1JCIzW1gnZihbIlxNNSJGY3A3JCQiM3NQQWgqeSR6Zk1GW3UkIjMrJnBcaTlPL2gpRlt1NyQkIjNIKlIkNDhPaCxCRlt1JCIzOzwrIVE4dXVSJ0ZbdTckJCIzSTljJUdHWXd1IkZbdSQiM3FWSXd1N2oiUiZGW3U3JCQiM3hNdSYpPk4sODdGW3UkIjMyemsnKVFTJik9WEZbdTckJCIzLXU6Ij4lSEJRJSpGaHQkIjNRSFReU0tLdFRGW3U3JCQiM0QsLWVbKikpPSV5Rmh0JCIzOkglPXMrJHpQU0ZbdTckJCIzYT5kRzJJKXB1J0ZodCQiMyEzS0loVDEtKyVGW3U3JCQiM2ZkKWYtKFxiNF9GaHQkIjNFJilIWHEqbykpMyVGW3U3JCQiMyVma1VUUSt4TiVGaHQkIjMlKm9kJnkwPyVvVUZbdTckJCIzeksxJTNuLnBzJEZodCQiMyJRbzdZI3o9NlhGW3U3JCQiMyFcY14qXEg2LkxGaHQkIjNpaidveFAqXGRaRlt1NyQkIjN3J3lISSg9OlZIRmh0JCIza146UUIqKm9XXUZbdTckJCIzPXclKVwleWlEbiNGaHQkIjNxKik9PXNdVEVgRlt1NyQkIjNNJGU/IW81Kj5VI0ZodCQiM1NVJilvOVEwY2NGW3U3JCQiMzUkSHFgbCYzJT0jRmh0JCIzcVtIZ3hRW15nRlt1NyQkIjNsOCJIRV8tOyU+Rmh0JCIzXWZmLSdmbCNvbEZbdTckJCIzSj5fUzpoaTg8Rmh0JCIzeThCZD90NC1zRlt1NyQkIjNpaGlaLiRwYFsiRmh0JCIzJ1t1MCVHSSd5LylGW3U3JCQiM2sicFMrOXBKRSJGaHQkIjNBOzByYmIpSD0qRlt1NyQkIjNxLzJmYU0yaTVGaHQkIjNhTHRIOFZ6ajVGY3A3JCQiM11lKSl5VnRzWCQpRmBwJCIzcCpII1JoUGE6OEZjcDckJCIzVmMlZmk6N0JMJ0ZgcCQiM3V3MHU8M0MjcCJGY3A3JCQiMyFIS0MwYTphRSZGYHAkIjMhSGdDVTh5KjQ/RmNwNyQkIjMnKikzZWMmbzEtVUZgcCQiM2lIRlR0VU4pWyNGY3A3JCQiM3k5Xlh3LUIlcCRGYHAkIjNPay5wZU5XOUdGY3A3JCQiMyd5N1k2Jj0ncD0kRmBwJCIzIWVbIylcIm9EV0tGY3A3JCQiM0VgaiZvOyQ9IW8jRmBwJCIzZD8uSzAmPWwkUUZjcDckJCIzSTliJD4xO1E8I0ZgcCQiMyYqPWBUZyEqZi9aRmNwNyQkIjNaSCk+VV55PSE+RmBwJCIzX1FxKT1pKXpoYEZjcDckJCIzIiopKmYhW0BEK2oiRmBwJCIzKnpKWlFnZyJRaUZjcDckJCIzSXFTKT5TRVRcIkZgcCQiMzEhM1tvUyUpZXonRmNwNyQkIjM7aWs4MFRDZThGYHAkIjNZbkksMzo9bHVGY3A3JCQiMzZWW2hWb1BBN0ZgcCQiM1EySSRbdlVLRylGY3A3JCQiM2s5WkpQSl8nMyJGYHAkIjNNSChvM05hZUkqRmNwNyQkIjMpKj5IeSgpM2c9NUZgcCQiM2AlZUMvTU4lPioqRmNwNyQkIjMpR2khNG1YIm9dKkYzJCIzRTM9LnYhbz8xIkY2NyQkIjNHZGF6MmprRikpRjMkIjM/Mi55N0ApSDkiRjY3JCQiMyF6Uk1Lcy0mWyIpRjMkIjM4enQ4X0hRUDdGNjckJCIzJ0cuSUZvIlFwdUYzJCIzRUgvJ1IlKVsqWzhGNjckJCIzPXZnJW8wIkcheidGMyQiM3kxIyp5YSRIR1siRjY3JCQiMyc+PlprWSo+NmhGMyQiM20kSCMzdERZWTtGNjckJCIzYmlPWCN5TUBWJkYzJCIzWyQqKXo2I2UrXj1GNjckJCIzM1ROKWY3JjNgWkYzJCIzJSkzJjRKJz4qUjYjRjY3JCQiM0FmTUg9J1tTMiVGMyQiMydmSSZcUENra0NGNjckJCIzP09FdklKLSZSJEYzJCIzQ2FLTFpnYmJIRjY3JCQiM2xDTCdbRzJnciNGMyQiM1tYIWZMa0g+cCRGNjckJCIzWXA5PV8qKSpwLiNGMyQiMyIqNCRcTlpCIz5cRjY3JCQiMyVvTlZWKycqek4iRjMkIjMpelxoXzQ+UVAoRjY3JCQiMzc+W1VJMSgqKnknRiwkIjNLIjRJKXk8d3Q5Ri83JEkqdW5kZWZpbmVkR0kqcHJvdGVjdGVkR0ZfaG1GXmhtLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiIUZmaG1GZ2htLSUrQVhFU0xBQkVMU0c2JFEhNiJGXGltLSUlVklFV0c2JDskITFCRXBNWT4rNSEjOCQiMSU9RVNDNTEvIkZkaW07JCExTldnbCMqKmVfIiEjNyQiMnVIYT9teURgIkZkaW0=Cherchons le points multiples1ere M\351thodeplot(x,-2..2,-10..10,discont=true);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JjdpbjckJCEiIyIiISQhM0ltbW1tbW1tbSEjPTckJCEzN28oUSIqMzMjeT4hIzwkITMpUUBJb3ZbLXonRi83JCQhM1NDIj5TMVojZj5GMyQhM0BgbCVvWFM/IXBGLzckJCEzenQuPzNNI3okPkYzJCEzRTMhPjAwM0cuKEYvNyQkITN5bCJcYFNlayI+RjMkITNxR1F0MUo+cXJGLzckJCEzKXBoND5VJjQmKj1GMyQhMzpzVXY0YTA4dEYvNyQkITMpZiMqMzs/Kkd2PUYzJCEzQT03diU9YDhYKEYvNyQkITNLOCczeCsieWE9RjMkITMkek0vUUYqKjNnKEYvNyQkITM7TidSVVNyTiQ9RjMkITNzXVdRJSpSJUd3KEYvNyQkITMmNCh6Qj8pSEMiPUYzJCEzIVJgOCN5KSo+S3pGLzckJCEzO2c3WS1KbyF6IkYzJCEzRkYjcFEoPks6IilGLzckJCEzLVtsZyJlRzp4IkYzJCEzXVQ5bUEqKnAlRylGLzckJCEzJ3kxZ3k3bCpcPEYzJCEzN0A7NEk6PSZbKUYvNyQkITNnSTJdS0pKRzxGMyQhMz0hMyZSJj04eXApRi83JCQhM0BLWyZIVVp1cSJGMyQhM25LPSpcJzRVOSopRi83JCQhM3Fka3JmJCpcKW8iRjMkITNSJm8qNEhXJT43KkYvNyQkITN1OywkKXojb2ZtIkYzJCEzbzshM0pGY0xRKkYvNyQkITNRcihmKCpcIilvayJGMyQhM1ovJypwbWpTPScqRi83JCQhM15aYjBQIXpZaSJGMyQhM3JHJSozb181NCoqRi83JCQhMyJHeSpcJjRFXWciRjMkITNbKyk0QkhaJD01RjM3JCQhMy1OJSp5LlBZJGUiRjMkITMlW3d1XiYqKltdNUYzNyQkITMlW3M+eT9KSGMiRjMkITNBVCUpUT1ySCQzIkYzNyQkITN1L2NGLXhdVDpGMyQhM3BUbk47OjM/NkYzNyQkITNLazlcT1UkPV8iRjMkITM1PSo+JGVxVWM2RjM3JCQhMytmLiZldTgxXSJGMyQhMykqPTNkRFxzKT4iRjM3JCQhM1EmXCUpKj47ZHk5RjMkITNFRmVkI3ovbEMiRjM3JCQhM19iOWklKVFRZjlGMyQhMyd5SkBSRjw8SCJGMzckJCEzQSY9a1pnZydROUYzJCEzZU1SPWhSJ1tNIkYzNyQkITN4SnMqKUc5RDw5RjMkITMtOXEmZnVrXlMiRjM3JCQhM08qWzJyczFqUiJGMyQhM19CKDQmZk1JcTlGMzckJCEzIUhUcDZsVGdQIkYzJCEzUCVHS2InUjJTOkYzNyQkITMjPi9UJVIyYWA4RjMkITNHcmliTStyRTtGMzckJCEzdUFZW3BFS0w4RjMkITM9cXdaI29NVnIiRjM3JCQhM2o/Yk1rYnQ2OEYzJCEzOyllZz5BNi0jPUYzNyQkITN1NltoUVc8I0giRjMkITNjXFA1SipSJUg+RjM3JCQhMyEzeD85JyopeXE3RjMkITMlXCUpbyZbVGttP0YzNyQkITNjKFEhKlIqb21dN0YzJCEzVUk/IXlUTm9AI0YzNyQkITNJXmFoTk5qSDdGMyQhMyIqPXRgO1dqLENGMzckJCEzPGpnRCRlcCE0N0YzJCEzJT43ckcheil5aCNGMzckJCEzNSpwLjQuVHY9IkYzJCEzPyNvW11RXVkqR0YzNyQkITNTSiNmaVoxbzsiRjMkITNwcHpQeClSI0dLRjM3JCQhM3l6clAqUi1jOSJGMyQhMyFvR3o/OFdxbSRGMzckJCEzKSk9dSZIIVJkQzZGMyQhM1VEL3hdSS1cVUYzNyQkITNkNkdvKSozRDA2RjMkITNRUEZQV1kwKSlcRjM3JCQhMy0pPiU9Ylg1JDMiRjMkITNzQT5rSVBhY2lGMzckJCEzXWcwYixtSGo1RjMkITMxZygqNCsqWzs5KUYzNyQkITNJWicpZSI+eEAvIkYzJCEzVi1zdEUmZSo0NyEjOzckJCEzcndRYDEtMks1RjMkITNBNCcpPitcbyRlIkZhejckJCEzNzEiejlBaj4tIkYzJCEzdE1ZIzReaDdJI0ZhejckJCEzInpAV3YpeUM+NUYzJCEzS2liPmQkXENpI0ZhejckJCEzcUgkNE9iS2wsIkYzJCEzJW8jW2o6NzhcSUZhejckJCEzRlRXbj5zIlEsIkYzJCEzdj5eTydbLE5rJEZhejckJCEzMWAmUmQpPTU2NUYzJCEzQC1sc3M4Z0dYRmF6NyQkITMmW20vPWInUTM1RjMkITNTUT1FYzkjbylmRmF6NyQkITNVdyhweUByYysiRjMkITNHMnprZ3hQVCkpRmF6NyQkITNWS0IhNGI4VisiRjMkITMlUWJEQFdLOzsiISM6NyQkITNAKSlbJFIpZSZIKyJGMyQhM0taYydRcFBTcCJGX11sNyQkITNBbTZYXXFGLTVGMyQhM0dDO1psLUspPiNGX11sNyQkITMrV3UncEApZiw1RjMkITNbbytbdVYpNDgkRl9dbDckJCEzK0FQWyRRPjQrIkYzJCEzbCl6cU0qZSM0VyZGX11sNyQkITMsKysrXTBDKzVGMyQhMzcmZjhRIio+KXk/ISM5N2FvNyQkITNpKioqKip6WmR0KioqRi8kIjNFanhpLD0pPSo9RmlebDckJCEzUSlSPjBtUFApKipGLyQiMy1TXGpYajNzSUZfXWw3JCQhMzcoelFJJXk2cSoqRi8kIjNxKFFYJHpidHE7Rl9dbDckJCEzJ2U+ZWItKVxjKipGLyQiMzNtSktvdydvOSJGX11sNyQkITNxJmZ4ITMjeUclKipGLyQiM3FcIWZZPmIiRygpRmF6NyQkITNIJVI7SmRRYyIqKkYvJCIzPy50PGtNeCxmRmF6NyQkITN5Ij5iIlEqKVIpKSkqRi8kIjNVRi4pZSNRNWJXRmF6NyQkITMnKil5SyNvJz5SJCkqRi8kIjMpZTp2J1w+USYpSEZhejckJCEzLyZRNSQpUlMleigqRi8kIjMuJFxWczojb1RBRmF6NyQkITNHeWJZZT1bcScqRi8kIjN1S2REVSRbPlwiRmF6NyQkITNXcTJpPUxfaCYqRi8kIjMtKipbRzg2djk2RmF6NyQkITM9SSJ6RiRbIj5QKkYvJCIzKT4pNF8/IylmLXhGMzckJCEzIyoqW1BwTTFCPSpGLyQiM202eiplZS1UJmVGMzckJCEzIW9uOTc/UGV2KUYvJCIzaTleRTBJPV9QRjM3JCQhMyo0eWk2OVRsSylGLyQiM0dNLlNEYCpcciNGMzckJCEzbWRyTV1hRyoqeUYvJCIzRiFmJ2VcPCEzNSNGMzckJCEzRC1kVUtaOy52Ri8kIjNBdHIscEIob3IiRjM3JCQhM01xYUF0WSskNChGLyQiM0JwSEohb3J1VSJGMzckJCEzV2gwRWBsIilvbUYvJCIzLSQ9NGp3MTU/IkYzNyQkITMxL2goKjQpKSlmQydGLyQiMyI9ZHEkeS45QzVGMzckJCEzY1o+KFFdZTUiZUYvJCIzVy0hKip5KmYlUXgpRi83JCQhM3kxel5gOyh6VSZGLyQiMy0rN1FfJSk+JnAoRi83JCQhM20nKUgqUWYxbipcRi8kIjM7anpYaEBOZm1GLzckJCEzKVI6KVw9Mm5qWEYvJCIzKytbX1lAPWtkRi83JCQhM3lpKGVIVGdqOSVGLyQiMz5zKCoqUUg7cysmRi83JCQhM1lec1t3RVNuUEYvJCIzdVBBO0kwZCFSJUYvNyQkITNWNGNDdV95O0xGLyQiMyk9O1RVZ3BucyRGLzckJCEzaHhcJ3BBYF0kSEYvJCIzKFJvVnghKUc8QCRGLzckJCEzWW9VPDIiMzVcI0YvJCIzY3c0QW5SIWVsI0YvNyQkITNlIVw0YyRIJno0I0YvJCIzK2RARUVQYSU+I0YvNyQkITNJZSU0bDY0bm0iRi8kIjNDejc0cz1MOTxGLzckJCEzXVJsVz9JMWM3Ri8kIjNZdihlZ14oPnc3Ri83JCQhM11UQjQpKSpvZkYpISM+JCIzVTxPeShRVklMKUZeaWw3JCQhMyJwTigpXFk3OE0lRl5pbCQiMyNSdjNRKSo0JlxWRl5pbDckJCEzIlxvcCY9XlFEKCohI0AkIjNNVzE6PFZSRCgqRmlpbDckJCIzL2AxaHgtODZWRl5pbCQhM2spPklxemQiPlZGXmlsNyQkIjNpbSNvNGlUJ1siKUZeaWwkITNxQicpb3EwNi4jKUZeaWw3JCQiMzQ5YFErZktIN0YvJCEzRyZbNSlmISo9WzdGLzckJCIzXyVmWjZWMHZsIkYvJCEzKSkqNDU7KClHVnEiRi83JCQiM3U2WyZvYyZSdz9GLyQhM3NmXllaNyYqcEBGLzckJCIzPT41MzdMcCJbI0YvJCEzJD1jIilmJXBjV0VGLzckJCIzJVwkM3ljdHFKSEYvJCEzWDdURChmeXQ/JEYvNyQkIjMnZSNvNyIqXDFPTEYvJCEzYylwQ2hcVVF2JEYvNyQkIjN3JzMrVTIueXckRi8kITNFMzI1ZTo+IlIlRi83JCQiM1toMU9ZPi1mVEYvJCEzaUhiI1wmRyopR11GLzckJCIzKVtmeCEzdnMnZSVGLyQhMyl6b0RrUCR5M2VGLzckJCIzKyJReig0XjsqKVxGLyQhMyQ+ay8pW1VqVW1GLzckJCIzcVE9b2ckRyk0YUYvJCEzcUc5NiZRYyJbd0YvNyQkIjMuazNveU41QGVGLyQhM2FaJD1wZVhYISkpRi83JCQiM2MvQyNwaHE7RCdGLyQhMylwdlVzInBFRTVGMzckJCIza3hgJilbeU5tbUYvJCEzZWpbLidbYikqPiJGMzckJCIzJWUmMzZRYVYhNChGLyQhMy9QJTNDISozZlUiRjM3JCQiMyJvOTozWCw1XihGLyQhM3FwJD4hel9JQjxGMzckJCIzNSoqUj5RelgoKnlGLyQhM1lNXSplVS8oKTQjRjM3JCQiM1chUkFWbyFRUyQpRi8kITMiNDNLOmk7LHUjRjM3JCQiMyg+LCFlb2dgTygpRi8kITM7OEA4YGleIXAkRjM3JCQiMzFZJSk+Ti4jKmUiKkYvJCEzS21GUlpddyRvJkYzNyQkIjNReFZHYSJlNU8qRi8kITNXemVcbXo9bnZGMzckJCIzcTMuUHRmPmomKkYvJCEzaiU9YGoqKT4iPjZGYXo3JCQiM2NKeF8+JDM9bipGLyQhMy1QYFdSRzMpXCJGYXo3JCQiM1lhXm9sMVUheSpGLyQhM0NSZSpwei49RCNGYXo3JCQiM0xsUXdRb3NNKSpGLyQhMyVHW01QRiczK0lGYXo3JCQiM0t4RCU9LEwhKikpKkYvJCEzIzMpKTMheV1xIVslRmF6NyQkIjMpUSQ+USk0Jz07KipGLyQhM21XaE9vQVxTZkZhejckJCIzSypHQFw9UkwlKipGLyQhM0dFVGBEJ3AkKnopRmF6NyQkIjMvbjQ+R2QicCYqKkYvJCEzWylcOyc0NCxlNkZfXWw3JCQiM3dXMVlyQVxxKipGLyQhMycpPkJITncnPnAiRl9dbDckJCIzW0EudDkpb1MpKipGLyQhM3M0JD0oUmsqZjgkRl9dbDckJCIzPysrK2VgaygqKipGLyQhM2s6KFxRLTpLNyNGaV5sN2luNyQkIjMlKioqKioqXEpwLSsiRjMkIjNFa1d6JSk+Im8mPUZpXmw3JCQiMzk6M2kjSF00KyJGMyQiMzlUYm9RZy5rX0ZfXWw3JCQiM2RJO0NxN2osNUYzJCIzYWkmWyVHU2ZuSUZfXWw3JCQiMypmV2l5QzdCKyJGMyQiM20kNFpuLyYqWzsjRl9dbDckJCIzVWhLW0RLKkgrIkYzJCIzMVVcRnBdJEhuIkZfXWw3JCQiM0YjKltzIT1iVisiRjMkIjMhXCkpcDZiXzA6IkZfXWw3JCQiMzdCbCdmODxkKyJGMyQiM1tbNWtta2NxKClGYXo3JCQiM2gleVxrL1QlMzVGMyQiMyVbLlp4NkokW2ZGYXo3JCQiMzRZSSRwJlw7NjVGMyQiM1shWyJRRillSl0lRmF6NyQkIjNkMmpUbikpKVEsIkYzJCIzJnpHdEA6TFtpJEZhejckJCIzMHAmKip5eDdtLCJGMyQiM0hEWChSXERYLiRGYXo3JCQiM3dJR1Epb08kPjVGMyQiMzVeVG14KD0waCNGYXo3JCQiM0MjNG0pKWZnPy0iRjMkIjM5eXdsMTpAIkgjRmF6NyQkIjMqW05gJ1EzYUo1RjMkIjNmYiUzN0JlKTQ7RmF6NyQkIjNKPDFXeTUtVDVGMyQiM3dzODgpNCRRVjdGYXo3JCQiMyNlI290P1RNaTVGMyQiM1U4WyMpKSpcV2kjKUYzNyQkIjNfbCcpKmZdM1EzIkYzJCIzI3pidGoibyNmPydGMzckJCIzV1NUeXUzPDA2RjMkIjMvWzBcUyR5OypcRjM3JCQiM0JDPUFEbChcNyJGMyQiMyRlKSpmNDBbZ0IlRjM3JCQiM1ErPzFIVFtYNkYzJCIzUyw0SEsnWylwT0YzNyQkIjMvVCoqR0FKcG02RjMkIjNNNEtTKEchSElLRjM3JCQiMycqPXcrKTRNeT0iRjMkIjMvX1ZFRStZISpHRjM3JCQiMy4jWyozIT4hZTQ3RjMkIjMzRFosJSoqMz9oI0YzNyQkIjNhSj0kKWZUdEc3RjMkIjMiZkdVPEonRzVDRjM3JCQiMzlBajokKnBIXTdGMyQiMyhcSiVSbig+KT5BRjM3JCQiM2tkaGFsJFs+RiJGMyQiMzVFSUxUKGYnZT9GMzckJCIzeTJidXVNIkdIIkYzJCIzX1FWTHpWa0Q+RjM3JCQiM3ksPCJHKjR3NjhGMyQiMyMpPjtdPyF5KyM9RjM3JCQiM2MhZk5XVSJITThGMyQiM1MnSE4iNCgpKik0PEYzNyQkIjNjMEVNYndQYDhGMyQiM1h5QndTdVBGO0YzNyQkIjN5QyRSI3olemJQIkYzJCIzanZpUC42dlQ6RjM3JCQiMzExQU1iPUImUiJGMyQiM1MlXCJRcyNHUVoiRjM3JCQiMz1ANm1FT3o7OUYzJCIzblhdYVwsXzE5RjM3JCQiM1x4OSg9YER0ViJGMyQiM0tDI0duJ2ZYWzhGMzckJCIzJ289PzVVWyhlOUYzJCIzI3koSGssdkYkSCJGMzckJCIzRUE0dz84VXk5RjMkIjN1JCkpZSNcXyVvQyJGMzckJCIzS1h4JTM/VCcqXCJGMyQiMyZwKFJuQG91KzdGMzckJCIzKkhJPkRwI29AOkYzJCIzP3ZtcjR0cmM2RjM3JCQiMzVOViJlKClwM2EiRjMkIjNTLk1XcCg+NzciRjM3JCQiMylHLkIlZkRmaDpGMyQiMzV3PS5maV4mMyJGMzckJCIzI3knb0k+NiskZSJGMyQiMztDTiZwYy83MCJGMzckJCIzKEdJeCU9XyVSZyJGMyQiMyMqeSIpcCYpZiEqPjVGMzckJCIzJ1FAXThyNFVpIkYzJCIzVzQ6T0pTWToqKkYvNyQkIjM5R1Rvdio0bmsiRjMkIjNCTk0pKj4peTBpKkYvNyQkIjMnUiR5I1JZRnBtIkYzJCIzc0J1KEgjUSk9UCpGLzckJCIza11XJ3olUl4pbyJGMyQiMyMpPkNvbS95QCIqRi83JCQiM2wkKlIpM151ITM8RjMkIjNYODIsS1N0MiopRi83JCQiM1VzbnhzJGYlSDxGMyQiM1tFR3VHZkQnbylGLzckJCIzXT5tRGgzZVw8RjMkIjNReS1nL00mKSlbKUYvNyQkIjNTRzlZOU9ocTxGMyQiM3N4P0IzLipISClGLzckJCIzJT5TY14ocDwieiJGMyQiMyh5KnBsdHYwNiIpRi83JCQiM3ZjNDQzXHE3PUYzJCIzUEQ3Z1ZHJSpIekYvNyQkIjNMYUM7bSlRTSQ9RjMkIjMxeVkmW1QhKVF3KEYvNyQkIjNbekMnSExVWSY9RjMkIjM1TWs1I1xMPmcoRi83JCQiM3ErP05DLW52PUYzJCIzI1JuXCYqPVAnW3VGLzckJCIzc2BtbXNFKlwqPUYzJCIzamVZXy8hZVBKKEYvNyQkIjM3P0MoKnkkUXIiPkYzJCIzSSdbdEdfW2Q7KEYvNyQkIjNgeUpwaWQlcCQ+RjMkIjNHTS1pa3EkKlFxRi83JCQiMylbNDRdY2shZT5GMyQiM3Eray9qJFwiNHBGLzckJCIzcSQpUV9gekZ5PkYzJCIzb2JCJjRNVykqeSdGLzckJCIiI0YsJCIzSW1tbW1tbW1tRi8tJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkRixGXmhuRl9obi0lK0FYRVNMQUJFTFNHNiRRITYiRmNobi0lJVZJRVdHNiQ7JCEjP0ZeaG4kIiM/Rl5objskISQrIkZeaG4kRl1obkYsOn voit que x est impaire et que tout point image admet deux ant\351c\351dentstx:=solve(x(t)=u,t);NiM+SSN0eEc2IjYkLCQqJkkidUdGJSEiIiwmIiIiRiwqJCwmRixGLCokRikiIiMiIiUjRixGMEYsRixGMiwkKiYsJkYqRixGLUYsRixGKUYqI0YqRjA=V\351rifions si pour ces deux ant\351c\351dents t1 et t2 d'un point image u de x, les images par y sont les m\352mesy1:=y(tx[1]);y2:=y(tx[2]);NiM+SSN5MUc2IiwkKihJInVHRiUhIiMsJiIiIkYrKiQsJkYrRisqJEYoIiIjIiIlI0YrRi9GK0YvLCYqJkYoISIiRipGK0YxRjRGK0Y0I0YrRjA=NiM+SSN5Mkc2IiwkKigsJiEiIiIiIiokLCZGKkYqKiRJInVHRiUiIiMiIiUjRipGL0YqRi9GLiEiIywmKiZGKEYqRi5GKSNGKUYvRilGKkYpI0YqRjA=Calculons donc pour quelle valeur de u, les param\350tres t1 et t2 ont m\352mes images par y solve(y1=y2,u);NiUhIiJeIyMiIiIiIiNeIyNGI0Ynseule la valeur r\351elle de u, convient, i.e. u=-1. Et donc on a un point double dont les param\350tres sontt_double:=solve(x(t)=-1,t);NiM+SSl0X2RvdWJsZUc2IjYkLCYjISIiIiIjIiIiKiQiIiYjRitGKkYuLCZGKEYrRixGKA==il s'agit du point D de coordonn\351essimplify([x(t_double),y(t_double)]);NiM3JCEiIkYkAinsi le point O de pam\351tre 0 est un point triple, les autres sont des points simples.Tracons le support de la courbe autour de ce point doubleplot(total,-5..5,-2..1);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdqczckJCEzN0hVWGdKaDZvISNAJCEzVUctUSNRIzNuOSEjOTckJCEzYVZxT0dYS2k4ISM/JCEzMi0tNThAVUl0ISM6NyQkITNZIVxlS2AiXFY/RjMkITN3MUpWbGdpJClbRjY3JCQhM19SVjB4V21DRkYzJCEzPU5YJikqM0otbSRGNjckJCEzSyIqcDgxXSVlUyRGMyQhMylSZm1aInA+RUhGNjckJCEzMS0iW3B3TXEzJUYzJCEzLWJ5NVNLJW9WI0Y2NyQkITNva0wuMWZCb1pGMyQhMzciSDYqM29JKDMjRjY3JCQhM0d4JVErS10lXGFGMyQhMy9SMEZjaDpEPUY2NyQkITN0I1JLZCEqejE4J0YzJCEzSSJleScpb2k3aSJGNjckJCEzVSVwQytjRT4ib0YzJCEzVXBMPVwjXCJlOUY2NyQkITNZX04pKnpAPiRcKEYzJCEzVVxoQDVTcEM4RjY3JCQhM2VNSyFIIip5VzwpRjMkITNvYSVHQ1EjWzg3RjY3JCQhMydReSk9MSUpeWIpKUYzJCEzcy9XJUdFIlE+NkY2NyQkITNJKDNCdUlBcmAqRjMkITNccUVwUVRzUTVGNjckJCEzYz5NWHcjWz0tIiEjPiQhMyk+KlxHJXpAIylvKiEjOzckJCEzaWZZY25yKSoqMyJGYHAkITNbJFt3OSF6ZXchKkZjcDckJCEzJWU1cmBDdWlBIkZgcCQhM0dQJjR3LT9zMClGY3A3JCQhM29mXkIzXWRpOEZgcCQhMy9YPUNaPXZUc0ZjcDckJCEzaV5jcl00KikpXCJGYHAkITNrdlhKMFdkdWxGY3A3JCQhMyVwNUN6Y0JfaiJGYHAkITM+WTtCP11oPWdGY3A3JCQhMzNVYUY1XSV6IT5GYHAkITMiW1kxIzQrLVheRmNwNyQkITM7LW55Qzp2IT0jRmBwJCEzdythZSMzKSkpKlslRmNwNyQkITNDIipcUDhic2JFRmBwJCEzL1paNSdbKW9xT0ZjcDckJCEzISlwM1g3JGU1OCRGYHAkITMvQlhUMCVwKio0JEZjcDckJCEzMyJIMWhVOW9nJEZgcCQhM2ElSFVPcDMnekVGY3A3JCQhMyUqM19iZiZlSTMlRmBwJCEzeVBJZCVIUHJOI0ZjcDckJCEzMSkpKXBYJVI9TGlGYHAkITM+Sl8iSCQ9UDs6RmNwNyQkITNaO1FrW3MjXFQpRmBwJCEzVS49bU1CVi82RmNwNyQkITMhKWUoXDQnKXo0MSIhIz0kITMiW1pDSmJXXmkpISM8NyQkITNbJlFeMiZbN243Rmh0JCEzXnVMQ0gjSHY3KEZbdTckJCEzeSpRWEZkWVFbIkZodCQhMz5VOidST0U4LCdGW3U3JCQhMzhFOVghcEtAciJGaHQkITNFUClwbTJcKVxeRlt1NyQkITMmbyEqKnpRQGdXPkZodCQhM28xXEgtPi4pWyVGW3U3JCQhM3U5O3gmUWInKj0jRmh0JCEzYyYqZkR0c1RcUkZbdTckJCEzRlZgPWNrPTZDRmh0JCEzKWYpSGIqKil5PWMkRlt1NyQkITNdRyJwWy07eW0jRmh0JCEzX3U5ST4uYSk+JEZbdTckJCEzL0BLLSF6NC0nSEZodCQhMzEhKm9CaHIjcCdHRlt1NyQkITN6XG5UTWskXEokRmh0JCEzWTcqR1ZaPidcREZbdTckJCEzc3dnXCVcVXFzJEZodCQhM3ciUlcmZSZwUUUjRlt1NyQkITNLSyJ5eUMkKTNSJUZodCQhMy0hPikzbFAneSM+Rlt1NyQkITMlKTNLJipvekMrX0ZodCQhM1V3T3pjUk9aO0ZbdTckJCEzI1JdRnAhKVxNcSdGaHQkITNPIVJbTnomW0Y4Rlt1NyQkITNRKTQ2XXN3RXUoRmh0JCEzKXBtXisoenUpPSJGW3U3JCQhM1MleidIQHVLSiMqRmh0JCEzXyMqNHNcXD1fNUZbdTckJCEzTzMtb3AnUnA9IkZbdSQhM29NU2s6Ij5NMCpGaHQ3JCQhM1I5VTZuUTI3PEZbdSQhM29CbGhuYilIaShGaHQ3JCQhM2chPlQ+Sj0pM0FGW3UkITNtSFRkS2QieSZwRmh0NyQkITNZTTk/JVJPKz0kRlt1JCEzPkBkT0ZaWy9qRmh0NyQkITNwWlpnPTZ1RlRGW3UkITNTOmRMcXJvIylmRmh0NyQkITNbUVteZ2BiaWZGW3UkITMpZSgqcDhNIVJrY0ZodDckJCEzZ0kjZiRSU3BCeEZbdSQhM24wIlEmRyo+bV0mRmh0NyQkITNYMjM9dVJhLzZGY3AkITNXWFR2Yl0hKVxgRmh0NyQkITM5KUhsNEhrRFQiRmNwJCEzSUZtUyYpXHdyX0ZodDckJCEzO2ElSDZuOmgnPkZjcCQhM2slcChwKHp1Uj4mRmh0NyQkITNVV1xtR2RrYEtGY3AkITMnZnFMZUlRazYmRmh0NyQkITNoTyZcLShRWzQnKkZjcCQhM2pvWEwsJWYiUl1GaHQ3JCQiMzNUWVViKTMpcCEqRmNwJCEzQ2E8ayQpZSEpZVxGaHQ3JCQiMyE0QnVROVcqZUlGY3AkITN3UkI/Uzx1eVtGaHQ3JCQiMzw1XTMqMyNlSj1GY3AkITMneiEpbzdwciopeiVGaHQ3JCQiMyE9LTc/cXRHSSJGY3AkITMhKXlMJypmMF0+WkZodDckJCIzVCplTiVSRC4yIylGW3UkITNXZF1AQFtaaFhGaHQ3JCQiM3lZU0p4cSYzJmZGW3UkITM+PltFVV9xL1dGaHQ3JCQiMyM9aEQhMzkhcHkkRlt1JCEzNVUoPURtMV40JUZodDckJCIzQjpfVGhtYE5GRlt1JCEzYXNoOyU9cDV6JEZodDckJCIzXSFlL0M3cicpcCJGW3UkITNCKSk9VSlmODg/JEZodDckJCIzT0Zjdjg7MyE9IkZbdSQhM25IIVJgWUsiUkVGaHQ3JCQiMyEqKSlbPFNqQXhuRmh0JCEzaSQpUlAkcFRUcCJGaHQ3JCQiMy0/IjReQ2hCJlJGaHQkITNZX01RIz47PScqKUZgcDckJCIzKSlRPUEqUUR6KnlGMyQhM1twYSopelgyKT0nISNBNyQkITMwK1BaKipHL008Rmh0JCEzQkNRMGIpeVBUJEZgcDckJCEzMnpyTHciPVQiUkZodCQhM10jKiplcD9LYCI9Rmh0NyQkITMxeCZIYC86N2onRmh0JCEzTSIqR15oPEBfXEZodDckJCEzdDYmUSYqXGJROCJGW3UkITNeWCgqb0g2N0A3Rlt1NyQkITNTPjgvXzdgKGYiRlt1JCEzW1AxJCpvJEdtLiNGW3U3JCQhMzl6OSd6LV0nb0NGW3UkITNzLnUhPSI0bXBPRlt1NyQkITMxO3E8Qlt2I0ckRlt1JCEzV0UmeWdQWlRDJkZbdTckJCEzPzNFJmYhMzNyWkZbdSQhMyU+c2gnPjhobiIpRlt1NyQkITMsJ3BAW2lEOzUnRlt1JCEzczMycnknSC0zIkZjcDckJCEzP0NrQVdGSyRRKUZbdSQhMylcLm02ITMlUmAiRmNwNyQkITM5ZV0vXScqKnAtIkZjcCQhMzNeRFhDZScqND5GY3A3JCQhM09mQVxEYSozSyJGY3AkITNnKCk9dkwwWCdcI0ZjcDckJCEzOGZFV1p2QVU9RmNwJCEzJW9YU294NXlgJEZjcDckJCEzNkwiKTMqUmk+LSRGY3AkITNtLUxkdiN6ZiplRmNwNyQkITN2OnE+QHFgVygpRmNwJCEzK3EmXFFyeVJ0IkY2NyQkIjM+OSZlaipSTyw1RjYkIjNcelc7SzB6PD9GNjckJCIzbSgpZT1wLSNwPyRGY3AkIjNNNS5ueTohZWMnRmNwNyQkIjNKRzk8JSo0PTw+RmNwJCIzIVxaMVooZWwoKVJGY3A3JCQiM3k2bjskKXlFcjhGY3AkIjNbZiRbS3VmcipHRmNwNyQkIjMhNFR4KCkpM3BwNUZjcCQiMy9cIkhGOExgSCNGY3A3JCQiMyllVUtsM1dReSlGW3UkIjM1KCozeCEpWy85PkZjcDckJCIzYVRbWERDKj5ZKEZbdSQiM2d3OVVHbSo0bCJGY3A3JCQiMyFmMWgpZjMlenAlRlt1JCIzW1gnZihbIlxNNSJGY3A3JCQiM3NQQWgqeSR6Zk1GW3UkIjMrJnBcaTlPL2gpRlt1NyQkIjNIKlIkNDhPaCxCRlt1JCIzOzwrIVE4dXVSJ0ZbdTckJCIzSTljJUdHWXd1IkZbdSQiM3FWSXd1N2oiUiZGW3U3JCQiM3hNdSYpPk4sODdGW3UkIjMyemsnKVFTJik9WEZbdTckJCIzLXU6Ij4lSEJRJSpGaHQkIjNRSFReU0tLdFRGW3U3JCQiM0QsLWVbKikpPSV5Rmh0JCIzOkglPXMrJHpQU0ZbdTckJCIzYT5kRzJJKXB1J0ZodCQiMyEzS0loVDEtKyVGW3U3JCQiM2ZkKWYtKFxiNF9GaHQkIjNFJilIWHEqbykpMyVGW3U3JCQiMyVma1VUUSt4TiVGaHQkIjMlKm9kJnkwPyVvVUZbdTckJCIzeksxJTNuLnBzJEZodCQiMyJRbzdZI3o9NlhGW3U3JCQiMyFcY14qXEg2LkxGaHQkIjNpaidveFAqXGRaRlt1NyQkIjN3J3lISSg9OlZIRmh0JCIza146UUIqKm9XXUZbdTckJCIzPXclKVwleWlEbiNGaHQkIjNxKik9PXNdVEVgRlt1NyQkIjNNJGU/IW81Kj5VI0ZodCQiM1NVJilvOVEwY2NGW3U3JCQiMzUkSHFgbCYzJT0jRmh0JCIzcVtIZ3hRW15nRlt1NyQkIjNsOCJIRV8tOyU+Rmh0JCIzXWZmLSdmbCNvbEZbdTckJCIzSj5fUzpoaTg8Rmh0JCIzeThCZD90NC1zRlt1NyQkIjNpaGlaLiRwYFsiRmh0JCIzJ1t1MCVHSSd5LylGW3U3JCQiM2sicFMrOXBKRSJGaHQkIjNBOzByYmIpSD0qRlt1NyQkIjNxLzJmYU0yaTVGaHQkIjNhTHRIOFZ6ajVGY3A3JCQiM11lKSl5VnRzWCQpRmBwJCIzcCpII1JoUGE6OEZjcDckJCIzVmMlZmk6N0JMJ0ZgcCQiM3V3MHU8M0MjcCJGY3A3JCQiMyFIS0MwYTphRSZGYHAkIjMhSGdDVTh5KjQ/RmNwNyQkIjMnKikzZWMmbzEtVUZgcCQiM2lIRlR0VU4pWyNGY3A3JCQiM3k5Xlh3LUIlcCRGYHAkIjNPay5wZU5XOUdGY3A3JCQiMyd5N1k2Jj0ncD0kRmBwJCIzIWVbIylcIm9EV0tGY3A3JCQiM0VgaiZvOyQ9IW8jRmBwJCIzZD8uSzAmPWwkUUZjcDckJCIzSTliJD4xO1E8I0ZgcCQiMyYqPWBUZyEqZi9aRmNwNyQkIjNaSCk+VV55PSE+RmBwJCIzX1FxKT1pKXpoYEZjcDckJCIzIiopKmYhW0BEK2oiRmBwJCIzKnpKWlFnZyJRaUZjcDckJCIzSXFTKT5TRVRcIkZgcCQiMzEhM1tvUyUpZXonRmNwNyQkIjM7aWs4MFRDZThGYHAkIjNZbkksMzo9bHVGY3A3JCQiMzZWW2hWb1BBN0ZgcCQiM1EySSRbdlVLRylGY3A3JCQiM2s5WkpQSl8nMyJGYHAkIjNNSChvM05hZUkqRmNwNyQkIjMpKj5IeSgpM2c9NUZgcCQiM2AlZUMvTU4lPioqRmNwNyQkIjMpR2khNG1YIm9dKkYzJCIzRTM9LnYhbz8xIkY2NyQkIjNHZGF6MmprRikpRjMkIjM/Mi55N0ApSDkiRjY3JCQiMyF6Uk1Lcy0mWyIpRjMkIjM4enQ4X0hRUDdGNjckJCIzJ0cuSUZvIlFwdUYzJCIzRUgvJ1IlKVsqWzhGNjckJCIzPXZnJW8wIkcheidGMyQiM3kxIyp5YSRIR1siRjY3JCQiMyc+PlprWSo+NmhGMyQiM20kSCMzdERZWTtGNjckJCIzYmlPWCN5TUBWJkYzJCIzWyQqKXo2I2UrXj1GNjckJCIzM1ROKWY3JjNgWkYzJCIzJSkzJjRKJz4qUjYjRjY3JCQiM0FmTUg9J1tTMiVGMyQiMydmSSZcUENra0NGNjckJCIzP09FdklKLSZSJEYzJCIzQ2FLTFpnYmJIRjY3JCQiM2xDTCdbRzJnciNGMyQiM1tYIWZMa0g+cCRGNjckJCIzWXA5PV8qKSpwLiNGMyQiMyIqNCRcTlpCIz5cRjY3JCQiMyVvTlZWKycqek4iRjMkIjMpelxoXzQ+UVAoRjY3JCQiMzc+W1VJMSgqKnknRiwkIjNLIjRJKXk8d3Q5Ri83JEkqdW5kZWZpbmVkR0kqcHJvdGVjdGVkR0ZfaG1GXmhtLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiIUZmaG1GZ2htLSUrQVhFU0xBQkVMU0c2JFEhNiJGXGltLSUlVklFV0c2JDskISNdRmZobSQiI11GZmhtOyRGM0ZmaG1GZGhtAttention MAPLE semble d\351tecter d'autres points multiples... Pourquoi???2eme M\351thodeAutre m\351thode: plut\364t que partir des ant\351c\351dents de x, prenons ceux de yplot(y,-10..10,-10..10,discont=true);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JTdpbjckJCEjNSIiISQhM3MiNDQ0NDQ0NCohIzw3JCQhMyE9XHZoc2AtdypGLyQhM20sXHFQJCk9YCkpRi83JCQhMyMpW3JCdjxsXiYqRi8kITMpZWYucW1Ca2spRi83JCQhM3EmKio0VzFkcUoqRi8kITMtKXB0J0hSKVJUKUYvNyQkITMxJVxldkkyNDMqRi8kITNdRCZRenMvLD0pRi83JCQhMy1EJXojSCp6ZSUpKUYvJCEzTVJYemFfV1p6Ri83JCQhM1hnaCxrJXp6aSlGLyQhM2lfdEw7TSU9dChGLzckJCEzTXZOX2BoTi0lKUYvJCEzcj1IYXRDcjN2Ri83JCQhMy1pWTAuaSxwIilGLyQhM3NIZSl5OnoheXNGLzckJCEzUTZpd3dYVU96Ri8kITMtWVBXYGhLW3FGLzckJCEzM2ZOKSoqXHZycChGLyQhM0EkKVtfZGA6N29GLzckJCEzTTd1I0h5V2tbKEYvJCEzSENqKW92elVnJ0YvNyQkITMzeG4mcCE+QFxzRi8kITNLXWlCM2NWcWpGLzckJCEzXVVYK0lcKzZxRi8kITM/KkcpPTlLJGU4J0YvNyQkITMrJmVKIXAkWzl5J0YvJCEzMkRWNVwiZio0ZkYvNyQkITNvdmx2PiEqKUhkJ0YvJCEzZzY9cndzLjBkRi83JCQhM2peJ1szcDVeSydGLyQhMyVwLkMjKlJGO1kmRi83JCQhMzk0KDQ/QkReNidGLyQhMyUpelwpZiozbmJfRi83JCQhMyNlJ0d0QkEnMyhlRi8kITMiPnNVXE8vaywmRi83JCQhM2MzUmpzIVtZbCZGLyQhM3gpUShReio9XCFbRi83JCQhMzlpKXkyKW9VPGFGLyQhM2U5YD12RER0WEYvNyQkITNZKm8yIzNpYCI+JkYvJCEzS3ZTbThxL2BWRi83JCQhM2tadCcpKSlIJWUmXEYvJCEzdCNHW0pMWFA3JUYvNyQkITNNR0YwUUlTUlpGLyQhMylII3lMJz1QTyJSRi83JCQhM1JcdTI2TCVmXSVGLyQhM0kzQSk9Qmx2byRGLzckJCEza3M1VG5VV2pVRi8kITMzLysjKkhSVmBNRi83JCQhM0EzKUhxOFtCMCVGLyQhM1NwWS0yZkZdS0YvNyQkITNzczAwTCZlViNRRi8kITMlKnlxU3cqUjsuJEYvNyQkITNJQTdNakgjKSllJEYvJCEzWXIzaHBQdTFHRi83JCQhM0U5WCopZnRSZUxGLyQhMzN4QyVmXFJ5ZSNGLzckJCEzOlhnSFMoW2E4JEYvJCEzPUwiZW9ZZ3NQI0YvNyQkITNzMDUkKjRCIXopR0YvJCEzaWBXaz0vNlhARi83JCQhM0tXZDxLM1psRUYvJCEzLlojKUchMyhHUT5GLzckJCEzdilwQkV2eHpVI0YvJCEzMEIqPjwkXHA+PEYvNyQkITN3ZXU4Q1B4N0FGLyQhM2FkWSQpXDcuQzpGLzckJCEzKy0jcCJ5KSlceD5GLyQhM1tyIUgoSDdOODhGLzckJCEzVW8wXiRlQmh2IkYvJCEzQVNDOzs/Jio9NkYvNyQkITMpZWIrVWhBWl8iRi8kITMpUk1OPElkITMjKiEjPTckJCEzUVlPWHFlWylIIkYvJCEzbDs7bkQqW2JMKEZjdzckJCEzPSwzR21wamg1Ri8kITM7eHhXalQpb1kmRmN3NyQkITNtXE4tOUtCTiQpRmN3JCEzS0Y1UXRNQCp5JEZjdzckJCEzTTxSSUI8Vy1nRmN3JCEzY2xJbnEhKVteQUZjdzckJCEzRVolR1IjcCcqKW8kRmN3JCEzdDkqPkcmMz9UKiohIz43JCQhM2syLl1eUTdqOkZjdyQhM0okUjQoKSopZUk2I0ZdeTckJCIzKXklKipwMkBLTCgpRl15JCEzSSZSJ2VNIUhwTikhIz83JCQiMy9AIm8hZXZfX0lGY3ckITM/JlFHSEsnPlQ4RmN3NyQkIjN1JVxheUovZ1AmRmN3JCEzSVZTW2FNSl1pRmN3NyQkIjM3QSUqKT09T3pbJ0ZjdyQhM1NwNHdeXWApPiJGLzckJCIzXVxWI2YvbykqZihGY3ckITMtVz90KHlda1MjRi83JCQiM01pS1duJEh0PilGY3ckITMvKSpcPFBAZkZQRi83JCQiMz12QCcqKW8heiV6KUZjdyQhMyxrPyNwJlskeVQnRi83JCQiM1MuPk0+ZzpXKilGY3ckITNPdjJZIW8hb3d2Ri83JCQiM2lKO3NcOF8kNCpGY3ckITMqejVjV0daQjcqRi83JCQiMyQpZjg1IW8nKUdDKkZjdyQhMyUpZUh2d3RQRzYhIzs3JCQiMy8pMyJbNT9EI1IqRmN3JCEzIz5UekpMJ1xeOUZmXGw3JCQiM0U7MyczTTw7YSpGY3ckITNZJilbYEVzOycpPkZmXGw3JCQiM1lXMENyRSk0cCpGY3ckITMxVjYyXFk6UklGZlxsNyQkIjMtMy9WT2BtbCgqRmN3JCEzI3BgMD9XVyhwU0ZmXGw3JCQiM2RyLWksIVsuJSkqRmN3JCEzNUxfU2sqPl8xJ0ZmXGw3JCQiM0JPLCJvbUldIioqRmN3JCEzKTNSISlbOyEpcDoiISM6NyQkIjN5KioqKio+TDgoKikqKkZjdyQhM247KT1rN0o4cSpGZV5sN2duNyQkIjMhKioqKioqZkI4NysiRi8kIjNfZGE+ejpWaSMpRmVebDckJCIzIWVDKyNmR00yNUYvJCIzKWV2IkheMiU+USJGZV5sNyQkIjNxIlwrQ1tzTSwiRi8kIjNTMiwzOlYpUWkoRmZcbDckJCIzUVAyZzBAZz41Ri8kIjNMUFVoISlIWC5gRmZcbDckJCIzSCQpNCEpRzx0RDVGLyQiM094O01fZSMpKTMlRmZcbDckJCIzKFtaLF8oNCp6LiJGLyQiM3RaQFN6SitPR0ZmXGw3JCQiM29tPmdALURdNUYvJCIzJ3pSV3QqZjEmPiNGZlxsNyQkIjMzXUhTOShvWjIiRi8kIjNhOEl4blkkXGEiRmZcbDckJCIzWUxSPzJzRyo0IkYvJCIzVHIiKnk/eTU8N0ZmXGw3JCQiM0UrZiFHPkMkWzZGLyQiM2NLOT15RUohKikpRi83JCQiM0VueVN5Nk8oPiJGLyQiMytaZ2p5UEBrc0YvNyQkIjNdTlBOO1twI0ciRi8kIjNlOVMoNFJ5KyNlRi83JCQiMydSZypIYSVHIW84Ri8kIjNzIT43QW00XzMmRi83JCQiM0NPSWRiOycqZjpGLyQiM01tKEg5QSl6WFZGLzckJCIzYSoqR3A5cjtgPEYvJCIzP00mKT4pcCQqMzMlRi83JCQiMzVtNio+SWFhJT5GLyQiM2ImPlw/KW85LlNGLzckJCIzSmQqKjNSIkhQNyNGLyQiMyZcZC8xSUJPLCVGLzckJCIzeCE+Q29TQSQzQkYvJCIzQ14jZi4rZ0UyJUYvNyQkIjNnTCR5JEchSCMqXCNGLyQiM0dWdElEJlFpOyVGLzckJCIzTykqZigqNE1fKm8jRi8kIjNbVEt6K2pTIkclRi83JCQiMyVlJD5nclhFJilHRi8kIjMyOEFFLFRwOldGLzckJCIzPyc+MUxcdHcwJEYvJCIzI2YnKilIWCNmT2ElRi83JCQiMyEqXEo/L153XktGLyQiM1klNChSZjYnZXAlRi83JCQiM18lUS1SbmBtVyRGLyQiM2twUFUhPnZgJltGLzckJCIzSy05eUFcWU1PRi8kIjNdJyo+WFcnW1MsJkYvNyQkIjNZVkZTSGIsMFFGLyQiM2VNcWAlej46OyZGLzckJCIzRmxMbydwO3krJUYvJCIzVXZERmxQR1NgRi83JCQiMzlmSCVvKWVoelRGLyQiM1VlITNZRz5UXCZGLzckJCIzQzAoZm09ZiV6VkYvJCIzW1duJTNfa2BuJkYvNyQkIjNDSzo5cFZOY1hGLyQiMzdHOyRmPlR2JGVGLzckJCIzbSdILTJVTy92JUYvJCIzUk0jPm0wc3EsJ0YvNyQkIjNlIUgmPkklW18kXEYvJCIzJVEpUkEkKj5PKj0nRi83JCQiM1UkSFtTUCEzR15GLyQiMy9eXVo+UEtxakYvNyQkIjNpJ1JCVEhnXkkmRi8kIjNtSFRdI29SdWAnRi83JCQiMzteMWY1XDsnXCZGLyQiM2BjYlsib3cmPW5GLzckJCIzVUUxQkVdYyVwJkYvJCIzKGZdamlJeHYhcEYvNyQkIjMrYSJHLCJIRm5lRi8kIjMjMyF5bm9uc3NxRi83JCQiM3V1WEFjQCFRMCdGLyQiM0tINiMzKUhuXnNGLzckJCIzN1Q/TT5eXVlpRi8kIjNZJkh1RT4zclYoRi83JCQiM0NtPGh0dC1Oa0YvJCIzXGVSQSgzPiE+d0YvNyQkIjMqUVZeI1tCVjxtRi8kIjMrXmVTQidcYXooRi83JCQiM1VkPlJ0PicqPm9GLyQiMy15Uyk9UyV5Iip6Ri83JCQiM1IlcFwlXFElPisoRi8kIjMvUmZ5UGxibyIpRi83JCQiM1dCXVJYJFtpPihGLyQiMz9eRnVDampkJClGLzckJCIzNzx6Lyk0PEJQKEYvJCIzQGBIQCcpZUNIJilGLzckJCIzNydRXDB2MVtjKEYvJCIzXjQiMyJmVDg8KClGLzckJCIzUW5RWzdYI2Z1KEYvJCIzSVRxJkg7aVQqKSlGLzckJCIzMl9qVGdaQ056Ri8kIjMnXCJmNnlkVnohKkYvNyQkIjNrUTZPMipSLjcpRi8kIjNdcmMmM2sjeWcjKkYvNyQkIjNUM3Bbc3Q2OSQpRi8kIjNBSXE/cCNSM1gqRi83JCQiM2doNVMtIlsyXSlGLyQiM1s7RVlQIm9TaipGLzckJCIzZXE9VHpcZyJwKUYvJCIzMytbTWNvaEApKkYvNyQkIjNJcyU+XlkiKTMpKSlGLyQiM1dFVFcjM3gyKyJGZlxsNyQkIjM/LCUqKXoqbyFbMCpGLyQiM2VVeXFPYyp5LCJGZlxsNyQkIjMnKW9MYHJdOWEjKkYvJCIzPWdwQksnSHYuIkZmXGw3JCQiM2o2KHktXk5DVipGLyQiM280JGU1Xy1eMCJGZlxsNyQkIjM+JT41V0lJRGkqRi8kIjMzQUA+YTAmUTIiRmZcbDckJCIzJCk0SyV6RnZXISkqRi8kIjNnVSJwISlRMD00IkZmXGw3JCQiIzVGLCQiMzI2NjY2NjY2NkZmXGwtJSZDT0xPUkc2JiUkUkdCRyRGYGFtISIiJEYsRmhhbUZpYW0tJStBWEVTTEFCRUxTRzYkUSE2IkZdYm0tJSVWSUVXRzYkOyQhJCsiRmhhbUZfYW1GYmJtl\340 encore, on voit que tout point image admet deux ant\351c\351dentsty:=solve(y(t)=u,t);NiM+SSN0eUc2IjYkLCZJInVHRiUjIiIiIiIjKiQsJiokRihGK0YqRighIiVGKUYpLCZGKEYpRiwjISIiRis=V\351rifions si pour ces deux ant\351c\351dents t1 et t2 d'un point image u de y, les images par x sont les m\352mesx1:=x(ty[1]);x2:=x(ty[2]);NiM+SSN4MUc2IiomLCZJInVHRiUjIiIiIiIjKiQsJiokRihGK0YqRighIiVGKUYpRiosJiokRidGK0YqISIiRipGMg==NiM+SSN4Mkc2IiomLCZJInVHRiUjIiIiIiIjKiQsJiokRihGK0YqRighIiVGKSMhIiJGK0YqLCYqJEYnRitGKkYxRipGMQ==Calculons donc pour quelle valeur de u, les param\350tres t1 et t2 ont m\352mes image par xsolve(x1=x2,u);NiUhIiIiIiEiIiU=Cependant, ici il y a un pi\350ge, en effet si u vaut 0 ou 4 Alors t1=t2 (voir expressions de ty) et donc il ne s'agit plus d'un point double, car le param\350tre est le m\352meil ne reste donc que le cas u=-1, c'est \340 dire le point d'ordonn\351e -1 et pour param\350tressolve(y(t)=-1,t);NiQsJiMhIiIiIiMiIiIqJCIiJiNGJ0YmRiosJkYkRidGKEYkCQFD3eme M\351thodeDerni\350re M\351thode (Le Meilleur pour la fin). Essayons sans trop de calcul de retrouver le r\351sultatSoient t1 et t2 deux param\350tres distincts correspondants \340 un point double. Le couple (t1,t2) est un couple solution du syst\351mesysteme:=[x(t1)-x(t2)=0,y(t1)-y(t2)=0];NiM+SShzeXN0ZW1lRzYiNyQvLCYqJkkjdDFHRiUiIiIsJiokRioiIiNGKyEiIkYrRi9GKyomSSN0MkdGJUYrLCYqJEYxRi5GK0YvRitGL0YvIiIhLywmKiZGKkYuLCZGKkYrRi9GK0YvRisqJkYxRi4sJkYxRitGL0YrRi9GL0Y0On simplifie les expressionssysteme:=factor(systeme);NiM+SShzeXN0ZW1lRzYiNyQvLCQqLiwmKiZJI3QyR0YlIiIiSSN0MUdGJUYtRi1GLUYtRi0sJkYsISIiRi5GLUYtLCZGLEYtRjBGLUYwLCZGLEYtRi1GLUYwLCZGLkYtRjBGLUYwLCZGLkYtRi1GLUYwRjAiIiEvKiosKEYrRi1GLkYwRixGMEYtRi9GLUYxRjBGM0YwRjU=t1 est diff\351rent de t2 (on cherche un point double) et tous deux sont distincts de 1 (voir domaine de d\351finition)Donc ce syst\350me est \351quivalent au nouveau syst\350mesysteme_equiv:=(t2-1)*(t1-1)/(t1-t2)*systeme;NiM+SS5zeXN0ZW1lX2VxdWl2RzYiKiosJkkjdDJHRiUiIiIhIiJGKUYpLCZJI3QxR0YlRilGKkYpRiksJkYoRipGLEYpRio3JC8sJCouLCYqJkYoRilGLEYpRilGKUYpRilGLUYpRidGKiwmRihGKUYpRilGKkYrRiosJkYsRilGKUYpRipGKiIiIS8qKiwoRjNGKUYsRipGKEYqRilGLUYpRidGKkYrRipGNkYpOn met un peu d'ordresysteme_equiv:=simplify(expand(systeme_equiv));NiM+SS5zeXN0ZW1lX2VxdWl2RzYiNyQvLCQqKCwmKiZJI3QyR0YlIiIiSSN0MUdGJUYtRi1GLUYtRi0sJkYuRi1GLUYtISIiLCZGLEYtRi1GLUYwRjAiIiEvLChGK0YtRi5GMEYsRjBGMg==Multiplier la premiere composante par (t1+1)(t2+1) nous donne un deuxi\350me systeme \351quivalent car t1 et t2 sont distincts de -1Mult:=(a,b)->[(t1+1)*(t2+1)*a,b];NiM+SSVNdWx0RzYiZio2JEkiYUdGJUkiYkdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlNyQqKCwmSSN0MUdGJSIiIkYxRjFGMSwmSSN0MkdGJUYxRjFGMUYxOSRGMTklRiVGJUYlsysteme_bis:=Mult(op(systeme_equiv));NiM+SSxzeXN0ZW1lX2Jpc0c2IjckLywmKiZJI3QyR0YlIiIiSSN0MUdGJUYrISIiRi1GKyIiIS8sKEYpRitGLEYtRipGLUYuAu lieu de r\351soudre ce syst\350me en t1 et t2 nous allons le r\351soudre pour les inconnues p=t1*t2 et s=t1+t2Sps:=subs(t2*t1=p,t1=s-t2,systeme_bis);NiM+SSRTcHNHNiI8JC8sJkkicEdGJSIiIkkic0dGJSEiIiIiIS8sJkYpRixGLEYqRi0=On change la structure de liste en structure d'ensemble Sps:={op(Sps)};NiM+SSRTcHNHNiI8JC8sJkkicEdGJSIiIkkic0dGJSEiIiIiIS8sJkYpRixGLEYqRi0=solve(Sps);NiM8JC9JInBHNiIhIiIvSSJzR0YmRic=Et donc connaissant le produit p et la somme s, on sait que t1 et t2 sont les deux racines distinctes de X^2-sX+p=X^2+X-1... CQFD 4eme M\351thode#Derni\350re M\351thode (promis c'est vraiment la derni\350re): On laisse MAPLE tout fairesysteme:={x(t1)-x(t2)=0,y(t1)-y(t2)=0};NiM+SShzeXN0ZW1lRzYiPCQvLCYqJkkjdDFHRiUiIiIsJiokRioiIiNGKyEiIkYrRi9GKyomSSN0MkdGJUYrLCYqJEYxRi5GK0YvRitGL0YvIiIhLywmKiZGKkYuLCZGKkYrRi9GK0YvRisqJkYxRi4sJkYxRitGL0YrRi9GL0Y0reponse:=[solve(systeme)];NiM+SShyZXBvbnNlRzYiNyQ8JC9JI3QyR0YlRikvSSN0MUdGJUYpPCQvRiktSSdSb290T2ZHNiRJKnByb3RlY3RlZEdGMUkoX3N5c2xpYkdGJTYjLCgqJEkjX1pHRjAiIiMiIiJGNkY4ISIiRjgvRissJkY5RjhGLkY5On exclut bien sur les solutions correspondants \340 des param\350tres identiques (on veut des points DOUBLES);allvalues(reponse);NiQ3JDwkL0kjdDJHNiJGJi9JI3QxR0YnRiY8JC9GJiwmIyEiIiIiIyIiIiokIiImI0YwRi9GMy9GKSwmRi1GMEYxRi03JEYkPCQvRiZGNS9GKUYs