Exercice 3On d\351fnit la param\351trisation, puis on construit le support partiel et sir la totalit\351 des param\350tresrestart;x:=t->3*t^2;y:=t->2*t^3;NiM+SSJ4RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCQqJDkkIiIjIiIkRiVGJUYlNiM+SSJ5RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCQqJDkkIiIkIiIjRiVGJUYltotal:=[x(t),y(t),t=-100..100]: plot(total);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdXNyQkIiYrKyQiIiEkISgrKysjRiw3JCQiM3EnSCp5QUNrcUchIzgkITM/YyNHI2VxL3M9ISM2NyQkIjMyJj1kNmFOVHUjRjIkITMvIW82TkJyJ1w8RjU3JCQiM1hMPSh5JT1RT0VGMiQhMyd5QCU0JFFMd2siRjU3JCQiM0YoUSVmOmp5SURGMiQhM3V2eC5FPWtcOkY1NyQkIjNFOSRvIWZmOyxCRjIkITNReVY+IzQrT00iRjU3JCQiM00kKjNIUS4wIjMjRjIkITMlZmRTR1YwYjoiRjU3JCQiM2NWJnpgUGxIKD1GMiQhM18jZnpDJHAubSkqISM3NyQkIjNFczMxak4kKSpvIkYyJCEzRzZuOHN4K2IlKUZUNyQkIjNWJFFmTkVQLF4iRjIkITM8KSkzX2krKEc5KEZUNyQkIjMhPjA0Kj0hPVxMIkYyJCEzS2pZJVtqJFxPZkZUNyQkIjNnIyk0KClILixyNkYyJCEzO1YpKW8zJDR1KFtGVDckJCIzP09pISpvJzNPLCJGMiQhM0x4UjsmPVF5I1JGVDckJCIzPypbQ1NbXVAlKSkhIzkkITMwMEw/KVtFNj8kRlQ3JCQiMy1DNnVMIipIJVwoRltwJCEzRS9RZzMsOihcI0ZUNyQkIjMlenddLiRca15pRltwJCEzJFxQSCgqR2xEIT5GVDckJCIzaUMyLUwhRzE7JkZbcCQhM14qPktrakZwVSJGVDckJCIzJT0qSFsuNVhnVUZbcCQhMydmL1BuJlJPcTVGVDckJCIzbyhlQSozZUQtTEZbcCQhMzRKJzMhKltkU0koRjI3JCQiM1doJHo3eTFmZSNGW3AkITNHLkBZR0BPaF1GMjckJCIzJ2ZaRUtEI29pPUZbcCQhMz0qUTJVRWNVNCRGMjckJCIzZ2IjKkhDTEVAOEZbcCQhM29vRTh5VGJbPUYyNyQkIjN2SCIpUUtUT1IkKSEjOiQhM1VMW0s0Q0pwIypGW3A3JCQiM1slXFwxVE1sdCVGaXIkITN1TFldRUlxblJGW3A3JCQiMyN5Qy5LQSNcYz9GaXIkITNvKUgvYyw3XjgiRltwNyQkIjMhKT4udjJsbmdjISM7JCEzX3otZSNbcSNSO0ZpcjckJCIzJj1jLDg3b04jSCEjPiQhMy4ranlGcTBDPiEjPzckJCIzIW8teXI2O1tkJkZpcyQiM0JjKG9GImY2LTtGaXI3JCQiM00lPXhGZS1CKj5GaXIkIjNlKEhYVEMkUSMzIkZbcDckJCIzYEh3UHIyJFxgJUZpciQiMzFYdFk2KSk0PFBGW3A3JCQiM251OWA5M21XIylGaXIkIjMpWypccm9iJz02KkZbcDckJCIzT0xFMFdGKlFIIkZbcCQiMyllZTEqM0FUInoiRjI3JCQiM0dMLzVAKFwkWz1GW3AkIjMlR2QhUTc7aGVJRjI3JCQiM1E/IlE5MzMmekRGW3AkIjNaX3kzOndlVV1GMjckJCIzLjs9Jz1yeixNJEZbcCQiM2BzYVEkUVMtVihGMjckJCIzV3MsKFFbMDJFJUZbcCQiM3U7RyEpZSlmLzIiRlQ3JCQiM3NKcS9BUVoiPiZGW3AkIjNdP0ojMzpTKFI5RlQ3JCQiMypSSnVIYnpUSidGW3AkIjNoRyRIVUwkPUo+RlQ3JCQiMyV6KW8oM11LM1ooRltwJCIzd1dCcFEvViZbI0ZUNyQkIjM7bi1BPFh6JHkpRltwJCIzJWY2dCIpekcnb0pGVDckJCIzLk5BPSpHOnEsIkYyJCIzSTRuOEBqbFpSRlQ3JCQiM0k5bnElb0xJPCJGMiQiMzkoMyo9cGcwISpbRlQ3JCQiM0ciW2dUbz1RTCJGMiQiMyQ0JGVhIyo9O0hmRlQ3JCQiM2kqKnA9VzQjKjM6RjIkIjMpPUxfLDZVVTgoRlQ3JCQiM3UsJVsjW2FCJHAiRjIkIjNrNUFmIlJfMFspRlQ3JCQiMyMqUjYtJlFpPig9RjIkIjMlNHgxPidINmUpKkZUNyQkIjNlZjQjNG1IeTMjRjIkIjNNNkwub2o6aDZGNTckJCIzQWZKYnE1KTNII0YyJCIzPEAzJ1tbLVlMIkY1NyQkIjM+Pip6c2JgeF4jRjIkIjMlKlswbSQqcG9QOkY1NyQkIjNXN3BeJmY6LGojRjIkIjNBSE11UUV3VDtGNTckJCIzNm1KPVQvJFx1I0YyJCIzZSN6dGFgSi92IkY1NyQkIjM/I3o/ZiIqWzUoR0YyJCIzIWZeVV1xV0MoPUY1NyRGKiQiKCsrKyNGLC0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiRGLEZpXGxGalxsLSUrQVhFU0xBQkVMU0c2JFEhNiJGXl1sLSUlVklFV0c2JDskITFHOzAneiwoKipmRjIkIjJ3akc6JSoqKipmSUZUOyQhKSsrITMjRmlcbCQiJDMjIiIlCalculons le vecteur vitesse VV:=unapply([D(x)(t),D(y)(t)],t);NiM+SSJWRzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlNyQsJDkkIiInLCQqJEYuIiIjRi9GJUYlRiU=M\352me pour M(0) la tangente en M(t) est Y=t(X-x(t))+y(t)Cherchons les points d'intersection de Tt avec Gammaequ:=y(tau)=t*(x(tau)-x(t))+y(t);solve(equ,tau);NiM+SSRlcXVHNiIvLCQqJEkidEdGJSIiJCMhIiIiIiVGJw==NiMsJEkidEc2IiMhIiIiIiM=tau:=-t/2;NiM+SSR0YXVHNiIsJEkidEdGJSMhIiIiIiM=On veut que la tangente en M(tau) soit orthogonale \340 la tangente en M(t), i.e vu que les pentes sont tau et teq:=tau*t=-1;solve(eq,t);t:='t':NiM+SSNlcUc2Ii8sJCokSSJ0R0YlIiIjIyEiIkYqRiw=NiQsJCokIiIjIyIiIkYlISIiRiQ=2 solutions:logique car on a une sym\351trie / OxOn \351crit la tangente en t0=2^1/2 et la tangente en tau_0=-2^1/2/2 (et le sym\351trique)t_0:=sqrt(2):xT1:=x(t_0)+t:yT1:=y(t_0)+t_0*t:EqT1:=[xT1,yT1,t=-infinity..infinity]:tau_0:=-sqrt(2)/2:xN1:=x(tau_0)+t:yN1:=y(tau_0)+tau_0*t:EqN1:=[xN1,yN1,t=-infinity..infinity]:t_0:=-sqrt(2):xT1:=x(t_0)+t:yT1:=y(t_0)+t_0*t:EqT2:=[xT2,yT2,t=-infinity..infinity]:tau_0:=sqrt(2)/2:xN2:=t:yN2:=tau_0*(t-x(tau_0))+y(tau_0):EqN2:=[xN2,yN2,t=-infinity..infinity]:total:=[x(t),y(t),t=-infinity..infinity]: plot([total,EqT1,EqN1,EqT2,EqN2],color=[red,blue,blue,green,green],thickness=[2,2,1,2,1]);LSUlUExPVEc2KS0lJ0NVUlZFU0c2JTdcdDckJCIzNTolWyVbO3psayEjNiQhM0ghej90JHA/R2ohIik3JCQiMytzPjY3elc7O0YsJCEzM0ArbHInZS0ieiEiKjckJCIzc3Erc1VIQCU9KCEjNyQhM1RkYzpaLnlWQkY1NyQkIjM0JlEkcFEhPjYvJUY5JCEzP2YmKXk8MSN5KSkqISM1NyQkIjNPYVgqKioqZUonZSNGOSQhMzstKnksS2pEMSZGQTckJCIzcyZIQGl6X2d6IkY5JCEzQCF6didlVnNISEZBNyQkIjMkcDdtI1IhXCY+OEY5JCEzVEExTzV4JlwlPUZBNyQkIjMzbkxuZih6LSwiRjkkITNyMk9BeHYoZkIiRkE3JCQiM1tEWDlCdlgjKXohIzgkITN3by9XR2VtIW8pRiw3JCQiM2MhPjwjKnAhemxrRlkkITMiPSY9eFZiP0dqRiw3JCQiMzZSaE5bKEdPTSZGWSQhM2NoV08kZXVXdiVGLDckJCIzVUxcQGxBOCFcJUZZJCEzOTNpTyV5YkBtJEYsNyQkIjMoRzksUk42ZiNRRlkkITNxeHJNQFhRISlHRiw3JCQiM0s8YDspZnMpKUgkRlkkITMseTImejgoPjFCRiw3JCQiMzl2M2U5WW90R0ZZJCEzJVEicD1GUC12PUYsNyQkIjNeIlIkPSpSKnBEREZZJCEzOCdbSDooPihcYSJGLDckJCIzOFhmJD13KEhQQUZZJCEzNUYiKilcPWAhKUciRiw3JCQiM2NcaHkhUTljKj5GWSQhM110XWJHSzMmMyJGLDckJCIzNV9tPFV4MiJ6IkZZJCEzKGVKPUlCTWhBKkY5NyQkIjM8IVF4YWhaa2giRlkkITMnKlE1QiVcYy0iekY5NyQkIjNxJmUlPSpmbGhZIkZZJCEzIVFNUl1xd0okb0Y5NyQkIjNKVkUlejQyZkwiRlkkITNWakhLTUU0VmZGOTckJCIzZi0iMyM9bUVBN0ZZJCEzUi8sVCYpPjcsX0Y5NyQkIjNPTFBJbUlgQTZGWSQhMztneFhJWnB4WEY5NyQkIjNvbyQqXCJbRVguIkZZJCEzbUkpUidwODBdU0Y5NyQkIjNtQ10jWyMqeVpjKiEjOSQhM2VuUmpjNFsrT0Y5NyQkIjNVPCVRekMoUnApKUZpcyQhM25XNCV6VGhdQCRGOTckJCIzdVsjPjtyIj1aIylGaXMkITN1aiUpek5sdSMpR0Y5NyQkIjNNQk9LN29AKW8oRmlzJCEzY3Y4dSZRJ3AlZiNGOTckJCIzc1tAWE86QCU9KEZpcyQhMzRCTykqZSd6UE0jRjk3JCQiMyEpKlsjKW8jKSo9R25GaXMkITNASXRhMy4/Q0BGOTckJCIzJSlIUTA2JVtVSidGaXMkITNGTkBhQ1xASj5GOTckJCIzV003R2B2USUpZkZpcyQhMzdmW19Gbyg9eSJGOTckJCIzSzE9RWVjcnpjRmlzJCEzPXkjPSlIeGFaO0Y5NyQkIjM7UyhmM3FKeFImRmlzJCEzZjonMzFSKVFFOkY5NyQkIjMrY0dyLHpCT15GaXMkITN4P0Y+I3BCb1QiRjk3JCQiM19VVkspZiI+bllGaXMkITMhbyJ6WzZlQ0Y3Rjk3JCQiM11pdl0yMWVmVUZpcyQhMz0sUHpsZi5xNUY5NyQkIjMpM2gkXGBpNy5SRmlzJCEzX1B6MVV1cSZRKkZZNyQkIjMhMzErUSNIaCplJEZpcyQhM2NzKjRnJnopeUYpRlk3JCQiM1cuVioqZi9UN0xGaXMkITMjb2AncF9TeFB0Rlk3JCQiM2kwPShlWz9oMSRGaXMkITNaKVxEKmZYek1sRlk3JCQiMyVSUiZ6XixLXEVGaXMkITM9Xyo+Mjt3J1tfRlk3JCQiM3puXiNRTHM/SiNGaXMkITNvRWljYiR5IXpVRlk3JCQiMyZSb01YaVtgLiNGaXMkITMjKW9eeEBQS01ORlk3JCQiM2tKLmwrdlswPUZpcyQhM2s5SkIyJlJHJkhGWTckJCIzWmJLYGhfJD5UIkZpcyQhM2otcyZbVW8/LyNGWTckJCIzcnVbI1JqQVY4IkZpcyQhMyMpM2AwMiRmL1oiRlk3JCQiM0FCNHdjLjM3JCohIzokITMhXD94QUldUDQiRlk3JCQiM0c/QHNuKXk4eShGXVtsJCEzU0VwLTcudWEkKUZpczckJCIzYUg2SEhAVGNjRl1bbCQhMyd6KHlIKz0oejwmRmlzNyQkIjNdViZIJipRP2tIJUZdW2wkITNiRWxnOEp1Rk1GaXM3JCQiM21OJj10ZUhacyNGXVtsJCEzXkNbaj9UOUo8RmlzNyQkIjNrcEBBNnQpeiM+Rl1bbCQhMzxbRiIqKlsnUkk1RmlzNyQkIjNmLV8oKjMjKSk9VSJGXVtsJCEzInpPJD1JJCkpZl8nRl1bbDckJCIzQXFYVzQ1ZCMzIkZdW2wkITMrJzMzUEJOYUwlRl1bbDckJCIzd1wwL3dyJUdfKSEjOyQhM24yL0t2SltHSUZdW2w3JCQiMzo3Jm8oKiozIVIlb0ZmXWwkITMzOiQ+bDJMI3pARl1bbDckJCIzenc6cnE1WFdkRmZdbCQhMyVvPXZzNCZ6djtGXVtsNyQkIjM/QFZmWDlOJ3olRmZdbCQhM1lbXmdiM2F5N0ZdW2w3JCQiM04jXENhdl81KyVGZl1sJCEzJTNTOU1HTTZ1KkZmXWw3JCQiMy1sSzhUPiFHSSRGZl1sJCEzNm5HYClccGVJKEZmXWw3JCQiMy1Leik+aylvRUZGZl1sJCEzc2dsd2RNRSFbJkZmXWw3JCQiMzQmeSZHPFBXOEBGZl1sJCEzV2FfQ0x1blJQRmZdbDckJCIzRSMqSGtSLilcbCJGZl1sJCEzeVMqKikpM3VUImYjRmZdbDckJCIzU0NsZVRtNiM+IkZmXWwkITM5Ilw/aj9mVWUiRmZdbDckJCIzWTAhSEdGJjNjJSkhIzwkITMpNE9IdlEoZmslKkZpYGw3JCQiM1xic19UST5QYEZpYGwkITNbc1hJXHopZXUlRmlgbDckJCIzJyplSlM/P1FKSUZpYGwkITNNcF85WlJZSj9GaWBsNyQkIjNUNS56QF06OzhGaWBsJCEzQ1lYKEdedDwiZSEjPTckJCIzdVAqZjUmSCRHaSRGW2JsJCEzc0xtXUFbMSRSKSEjPjckJCIzI1taOlxNJDNyPSEjQCQhM09CaFcnKSpwNiYpKiEjQzckJCIzIykzaSdSUSMpeWMkRltibCQiMzUoek03ckxHPylGYWJsNyQkIjNVajEhM210XUYiRmlgbCQiMzlcby1oQSE9YSZGW2JsNyQkIjNCNS9iLGROLUhGaWBsJCIzOSQqM0AqZmFKIT5GaWBsNyQkIjNpUixJQEhld19GaWBsJCIzWXI/PXJeRmxZRmlgbDckJCIzIUglMyI9Zzg0RylGaWBsJCIzRUAhXGVkST88KkZpYGw3JCQiMydRUkAiPlElSD0iRmZdbCQiMzl4cSEzOTRnYyJGZl1sNyQkIjNJMS92eF4pM2wiRmZdbCQiM0dqPzhzWyE9ZSNGZl1sNyQkIjNtM0UnKT5dclBARmZdbCQiMyUqM1hwKDMkRy9RRmZdbDckJCIzKXkhcG40OiZvcyNGZl1sJCIzWzovMnhXdiFbJkZmXWw3JCQiMygpcGZ3X0thQUxGZl1sJCIzSXFZTyVmcDlQKEZmXWw3JCQiM2ljTiFSIlwyVFNGZl1sJCIzO1tURHInZXcpKSpGZl1sNyQkIjN5JjRlQCFHTCJ5JUZmXWwkIjNxIyp6QyZRU0RGIkZdW2w3JCQiMydIQmQ7MilRKXAmRmZdbCQiM3VfcyVcLXpjbCJGXVtsNyQkIjMpSDtuKm9iImYob0ZmXWwkIjNnKlF1JSk0VVg+I0ZdW2w3JCQiMydbOEwqeSQ0dWEpRmZdbCQiM00hby5NUiVlVElGXVtsNyQkIjNxOWYzQ215ITMiRl1bbCQiM049ViNRZz9aSyVGXVtsNyQkIjMsNiFcKDRbND45Rl1bbCQiM1B4TjBObXcxbEZdW2w3JCQiMyM9SXQpcDNyUj5GXVtsJCIzbXNQZSg0NClSNUZpczckJCIzdTYvZFJNQz5GRl1bbCQiM2NcbjNjJD1mcyJGaXM3JCQiM1FUd08zQyhwTyVGXVtsJCIzSFxYQE8pPkReJEZpczckJCIzKSopSDx1MUxJaiZGXVtsJCIzK1lSVkxFIWY5JkZpczckJCIzKjM5SiUpXDw6YShGXVtsJCIzJyoqNCR5VSlIOSh6RmlzNyQkIjMvaUFnJEhhRykqKUZdW2wkIjM2XiY9ZjxpaS4iRlk3JCQiMzU7K045SzEpMyJGaXMkIjM3JyoqUkNNSjlRIkZZNyQkIjMkcCYpKT1IeStYOEZpcyQiM29qOCU+NjMnKSo9Rlk3JCQiMyllTngpKlEtXXEiRmlzJCIzbjI6Wyh5Knk0RkZZNyQkIjNUMnc0JCo9a0k+RmlzJCIzVUZPQSJwSl5FJEZZNyQkIjNFYisxPHBBL0FGaXMkIjNJeCc+MzovSylSRlk3JCQiM0EpM3RcbXAuYSNGaXMkIjN5alQ2RSdlI0dcRlk3JCQiMzshZnZlcy8oZkhGaXMkIjNFSm8iR0tmdj4nRlk3JCQiMyp5KD4pSFRCJTRLRmlzJCIzPTAnZWAob0IpKnBGWTckJCIzRyEpPltVSTgjXCRGaXMkIjNRQnZLRFwqSCV6Rlk3JCQiM3lOcShmYDZSIlFGaXMkIjMnKnBXPT5pdmwhKkZZNyQkIjNzPShlQXguQj0lRmlzJCIzV1ttaUQoXDUvIkY5NyQkIjMkb24zajRvbmclRmlzJCIzZjQncFxVIVwuN0Y5NyQkIjMzOXUoKlIlKkcqNCZGaXMkIjNdIj43OiZIYyw5Rjk3JCQiM0l5enZzOXJ2YEZpcyQiM3BtSS8lXGRxXiJGOTckJCIzbVI5TnBXQnZjRmlzJCIzPXAvPClHKWZYO0Y5NyQkIjNJanVeWWldK2dGaXMkIjMpeWsrcnkhMyp5IkY5NyQkIjNTL2FLNF1jYWpGaXMkIjNRUS8lXG9TKFw+Rjk3JCQiMyNvOSN5YiRcNngnRmlzJCIzWFUqKSlcSHhYOSNGOTckJCIzK1opPmp3IzNJc0ZpcyQiMzVeanhASUVtQkY5NyQkIjNjQzMkXEoxdHQoRmlzJCIzWTgzP1BvZT5FRjk3JCQiM0U4LD03KyUpKkgpRmlzJCIzJDR4dCUqMysvIkhGOTckJCIzUWRpRGIiR2cjKilGaXMkIjNvWiZSRm0tZkMkRjk3JCQiMyQ9cG43NF1laSpGaXMkIjNoP0AveiY+XWokRjk3JCQiM3dsWHpRPjhUNUZZJCIzN0UhcD9pLSopMyVGOTckJCIzKSoqSC1oVysoSDZGWSQiM3gjWylbXHZnQFlGOTckJCIzKD1dX3N6cStCIkZZJCIzZSZcQFs/OjVEJkY5NyQkIjNbeVguc29WVzhGWSQiM1ghZl1aVC4sKydGOTckJCIzVydlNmk3RmJaIkZZJCIzIWYieXNHaXMpKm9GOTckJCIzOTd0UVUnb25pIkZZJCIzMStoXlh5OCcpekY5NyQkIjMiKUdAcjhQXi09RlkkIjMsKmYvKnB6ajkkKkY5NyQkIjNuX3NxKlFjJDM/RlkkIjNBKzdcJD4jXCY0IkYsNyQkIjNfdy9VP0hlXkFGWSQiMyZcdFxnPjQvSSJGLDckJCIzQXYsdC5nIz1hI0ZZJCIzL2pCJnphI3pmOkYsNyQkIjMhKVF6XzFKLiMqR0ZZJCIzKTMzQHVUNUkqPUYsNyQkIjMqcDBndiJmJCo+TEZZJCIzJClSI0goeio+JEdCRiw3JCQiM3Urcl1PK01dUUZZJCIzJ1JzTEttOiEzSEYsNyQkIjMhKio+NFd5LCk9WEZZJCIzQSd5IWZSZ0cocCRGLDckJCIzJVJKUSIpW1p4UCZGWSQiM09zLyE9dCMzK1tGLDckJCIzVTNNODRbMjJsRlkkIjNnIjNqI0gxIiopUSdGLDckJCIzIlwzSCllYlVMISlGWSQiMyc0c0h6YVBSdylGLDckJCIzNHE/XCwvdDs1RjkkIjNXISo9T1FTJHlDIkZBNyQkIjMhRy1DcU91eksiRjkkIjMnPVIkeSQpZmxpPUZBNyQkIjNTJTRYR2c/diE9RjkkIjNBJnA2JWYmR3kmSEZBNyQkIjNQakxsQipIR2cjRjkkIjNGbC9ULiZHNjYmRkE3JCQiM08hR29mZ0BwMSVGOSQiM1VCXipvSXNFKSoqRkE3JCQiM2d4LlE2QzNJc0Y5JCIzPWMkSHYlR0VtQkY1NyQkIjNlWnYnPSUqb25pIkYsJCIzIzQ/STMwU2gpekY1NyQkIjNJIT5xdXd2cV0nRiwkIjN1Z1RtUz8iKilRJ0YvNyRJKnVuZGVmaW5lZEdJKnByb3RlY3RlZEdGXmltRl1pbS0lKlRISUNLTkVTU0c2IyIiIy0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiFGaWltRmppbS1GJjYlN1M3JCQhMi0rKyshKioqKioqKioiJCJIJCEzXGY0QltOQDk5RmJqbTckJCEzR1opSDwnW3YoKVJGZl1sJCEzNjtBTkAoekIjZkZmXWw3JCQhMytWQjxzMUFgPUZmXWwkITMhKkg0OEBEcC5IRmZdbDckJCEzWGlKWHdjXzU1RmZdbCQhMyd5IzRDSD0lPnIiRmZdbDckJCEzdVMuaUZkP25mRmlgbCQhMyUqRzxVUkl0RTZGZl1sNyQkITN0TFh1MyV6LGAkRmlgbCQhM0pXSD9BWiYzI3lGaWBsNyQkITNxby0yaUhpOz9GaWBsJCEzI3knKikqeW1pLm8mRmlgbDckJCEzI0hfLCdIOyZcJSkpRltibCQhM2NReTAhPSNIelNGaWBsNyQkITNfbWIxUnpXUHIhIz8kITNNXEJVKzVfUUdGaWBsNyQkIjNpcW9RdWZXKnAnRltibCQhMyVlIik0ISpRIyk0KT1GaWBsNyQkIjNvLiYzKlxTcUI3RmlgbCQhM00sWi5oI1t5NCJGaWBsNyQkIjNqelFucng4QztGaWBsJCEzY0BkIykzWVw6YEZbYmw3JCQiM3AqKioqKio+MF8sP0ZpYGwkIjNRVCRmZStTLjojRltdbjckJCIzISoqKioqKioqek4hW0JGaWBsJCIzXihwOGJbcD4jXEZbYmw3JCQiMycqKioqKioqenUnPm8jRmlgbCQiMztHUzgkZndXaypGW2JsNyQkIjNnbW1tTyU0XylIRmlgbCQiMyVwJj42WmxIJFIiRmlgbDckJCIzN0xMTGBNelhMRmlgbCQiMytCcCZRTlJLIT5GaWBsNyQkIjMjR0xMTFRiN2wkRmlgbCQiM0chKnpaK3lBTkJGaWBsNyQkIjNnKioqKioqKkchZTFTRmlgbCQiM3dQJjMsMUx4JEdGaWBsNyQkIjNlS0xMOEk1QFZGaWBsJCIzO2U1N2hgYCNHJEZpYGw3JCQiM00rKyshSCU9bVlGaWBsJCIzOyMzL0YpUmJxUEZpYGw3JCQiMzUrKytxS3klKlxGaWBsJCIzJHAvLW82al9CJUZpYGw3JCQiM2BMTExMPWtQYEZpYGwkIjMzLVEvWiRRLHMlRmlgbDckJCIzRUxMTEJJXF9jRmlgbCQiMykpNDYycV5TbF5GaWBsNyQkIjNfbW1tbUQ1IypmRmlgbCQiMzVWVzsjZiZvWGNGaWBsNyQkIjNObG1tTzknW00nRmlgbCQiM1JcZU9xPmNXaEZpYGw3JCQiMz0qKioqKipwIVI+bCdGaWBsJCIzNyNHRlRLTil5bEZpYGw3JCQiMyNlbW1tSyJmJClwRmlgbCQiMyNbI3BcVkMneS8oRmlgbDckJCIzVyoqKioqKmYwQUV0RmlgbCQiMy5AQzlfTFRLdkZpYGw3JCQiM00pKioqKio+a1Rod0ZpYGwkIjN4S2RTJCk9WDEhKUZpYGw3JCQiM3UpKioqKipcY3QmKXpGaWBsJCIzTUosLFAmM15ZKUZpYGw3JCQiM2UpKioqKipmbyRlTSlGaWBsJCIzbyQ0Pj9ib1YoKilGaWBsNyQkIjM/S0xMOFFTcCcpRmlgbCQiMyV6JCllZEtoPlYqRmlgbDckJCIzcCoqKioqKipmISlbLCpGaWBsJCIzdzh6JUhHUjAjKipGaWBsNyQkIjMlZm1tbSJSJHpLKkZpYGwkIjNPekIiSE5Fai4iRmZdbDckJCIzcyoqKioqKnpRPXEnKkZpYGwkIjMjKlsiKipvIXlzJTMiRmZdbDckJCIzbUpMTEJXQCMqKipGaWBsJCIzRyc9KDMuKXAtOCJGZl1sNyQkIjNaYkdoYyNHZS4iRmZdbCQiMyUpZmxKYydSPz0iRmZdbDckJCIzbztcWEdhdXk1RmZdbCQiM14qSCV6LVB0VTdGZl1sNyQkIjNlaGUnKUdJeEw2RmZdbCQiMylcSSs7W2EwSyJGZl1sNyQkIjM5MnlebiU9LT8iRmZdbCQiMz47KCo0QURfOTlGZl1sNyQkIjNrbUFoSEh4KEciRmZdbCQiM1UiKSpSKUhLTVE6RmZdbDckJCIzVi0/WlhmNC85RmZdbCQiM2FnXFs7KVtHcSJGZl1sNyQkIjNTWG1PQiFlP2IiRmZdbCQiM0BwL3ckeik0Nz5GZl1sNyQkIjNfLUBaM2pdMT1GZl1sJCIzJ0c9eiU0SSU+RiNGZl1sNyQkIjMlKm8oKTRCIjRiPSNGZl1sJCIzJyoqeSwsJFIkeiFHRmZdbDckJCIzRzMhKm9dZihSKUhGZl1sJCIzZ0VceVlsOFBSRmZdbDckJCIzVXZCVSYpelAtX0ZmXWwkIjNVQzQ1InpJVzIoRmZdbDckJCIyLSsrKyEqKioqKioqKkZiam0kIjNcZjRCW05AOTlGYmptRl9pbS1GZGltNiZGZmltRmppbUZqaW1GZ2ltLUYmNiU3YW83JEZgam0kIjNXKHphNnVuNTIoIiQhSDckJCEzK3FOdmI6ZW05RmlzJCIzWWZxaTtMUVA1RmlzNyQkITMrXXl3eXhTRHRGXVtsJCIzJ1JPSCNcNVEkPSZGXVtsNyQkITNNTF8lZT0wJ3lbRl1bbCQiMzdhKltOTUlLWCRGXVtsNyQkITMrRFJRKilRP2JPRl1bbCQiMz9cKDMyKlw6KWUjRl1bbDckJCEzbjtFI0hmLT1WI0ZdW2wkIjNJVyZveWp6SXMiRl1bbDckJCEzdVY+cFc+NT89Rl1bbCQiM3dHJVs5Jz5hIUgiRl1bbDckJCEzciJIaGtILCUzN0ZdW2wkIjNJeEtHXUcvIWUpRmZdbDckJCEzcz0oZk1zNGItKkZmXWwkIjM7O0c9b1dOPGtGZl1sNyQkITNhZWtJI1sxcSdmRmZdbCQiM3E2QjMnM21ZRCVGZl1sNyQkITNHWilIPCdbdlBXRmZdbCQiM2lzPy4mKj1LdEpGZl1sNyQkITNjT1owIUdPcC8kRmZdbCQiM11YJEhYa2spKj0jRmZdbDckJCEzKkhNc0BuP0tJI0ZmXWwkIjNNSDkjXEh5Um0iRmZdbDckJCEzWWlKWHdjX2c5RmZdbCQiMzlHaygqW0g1bzVGZl1sNyQkITMzTT93czBzWTVGZl1sJCIzZydHbzFhJilcdihGaWBsNyQkITN0TFh1MyV6LC4pRmlgbCQiM2E5Nm0veHVKZ0ZpYGw3JCQhM3FvLTJpSGk7bEZpYGwkIjNJRSI0dm4sOidcRmlgbDckJCEzR18sJ0g7JlwlUSZGaWBsJCIzbWgmKWVMayc0OyVGaWBsNyQkITNkbCFSeldQcl0lRmlgbCQiM108M3hWM2VTTkZpYGw3JCQhMyVISmhEU2IrJFFGaWBsJCIzd11YMVE6Ij0xJEZpYGw3JCQhM0snXCI0XWZId0tGaWBsJCIzXSQqcDJ1V0NxRUZpYGw3JCQhM1E/aEtHQSdlKEdGaWBsJCIzISpHNCt1XTQoUSNGaWBsNyQkITNJKysrIVt6JSlcI0ZpYGwkIjM7OG5idF5DP0BGaWBsNyQkITM1KysrK1UnPjojRmlgbCQiMyd6JlJHcD1Bdj1GaWBsNyQkITMvKysrP0QuPT1GaWBsJCIzVVRIIVJeJzRSO0ZpYGw3JCQhM1NMTExqMHo5OkZpYGwkIjNPa08rcT9uQzlGaWBsNyQkITMhcG1tbWExVToiRmlgbCQiMzUiPUptbSsocDZGaWBsNyQkITMpPW5tbSdlVyhbKUZbYmwkIjN6dms/TFcxUCYqRltibDckJCEzKy8rKytyPk1cRltibCQiM1BRUDBOIlFYLShGW2JsNyQkITNDdW1tbSlwKil5IkZbYmwkIjNXTzYqKkhtXytbRltibDckJCIzWS4rKytIJT1tIkZbYmwkIjNhPGcyQU5WZ0JGW2JsNyQkIjMzLCsrK0YkeSVcRltibCQiM2ljIz4nZV55KW8kRltdbjckJCIzSU5MTEwkPWtQKUZbYmwkITM5I2VBJypIKVsoUSNGW2JsNyQkIjNFTExMQklcXzZGaWBsJCEzcEAiZlpUQVFoJUZbYmw3JCQiM19tbW1tRDUjXCJGaWBsJCEzSyl5RF9fQ18sKEZbYmw3JCQiM05sbW1POSdbJT1GaWBsJCEzYjxHQjtrZzQmKkZbYmw3JCQiMz0qKioqKipwIVI+OiNGaWBsJCEzQSkqUl09dDRvNkZpYGw3JCQiMyNlbW1tSyJmJFsjRmlgbCQhM2U+KSk9eTNoLTlGaWBsNyQkIjNXKioqKioqZjBBRUdGaWBsJCEzb246XktqKVtrIkZpYGw3JCQiM00pKioqKio+a1RoSkZpYGwkITNjQks5KWYwPik9RmlgbDckJCIzdSkqKioqKlxjdCZbJEZpYGwkITNHQmElXCNSQjZARmlgbDckJCIzZSkqKioqKmZvJGUlUUZpYGwkITNXLypcQyRSJ2VPI0ZpYGw3JCQiMz9LTEw4UVNwVEZpYGwkITNxdig+JD4ubSVmI0ZpYGw3JCQiM3AqKioqKioqZiEpW14lRmlgbCQhM1w5ViJ6SFwqUUdGaWBsNyQkIjMlZm1tbSJSJHojW0ZpYGwkITMnUkQtNVU2LjEkRmlgbDckJCIzcyoqKioqKnpRPXFeRmlgbCQhM0osaCQ0cD1CSSRGaWBsNyQkIjNtSkxMQldAI1wmRmlgbCQhMyoqKUd3PW5HK2AkRmlgbDckJCIzIVFiR2hjI0dlZUZpYGwkITMnZTpCIVF6KCkpeSRGaWBsNyQkIjN5bSJcWEdhdUcnRmlgbCQhM3NhPVRxIltCNCVGaWBsNyQkIjMoW2hlJylHSXgkb0ZpYGwkITMvIyk9V2s/WCJbJUZpYGw3JCQiM0lzIXlebiU9LXZGaWBsJCEzNVEqUXBFI0heXEZpYGw3JCQiM09tRTcnSEh4UClGaWBsJCEzO2wtazBlUnFiRmlgbDckJCIzRkMrc2ElZjRhKkZpYGwkITN1Z14nKVFQI0hSJ0ZpYGw3JCQiM1NYbU9CIWU/NSJGZl1sJCEzPy5GQ0RPPFJ1RmlgbDckJCIzcS1AWjNqXWM4RmZdbCQhM1BzaSRRcSVSUSMqRmlgbDckJCIzJCpvKCk0QiI0YnQiRmZdbCQhM3lJXHBJXCQ9PiJGZl1sNyQkIjNHMyEqb11mKFJgI0ZmXWwkITN3KVxPIVJpVmM8RmZdbDckJCIzNSMqSCMpKVFvNEgkRmZdbCQhM213ek1EMnIiSCNGZl1sNyQkIjNVdkJVJil6UF9aRmZdbCQhM20oXCU+aEwzRExGZl1sNyQkIjN3bUpjISlSXSdHJ0ZmXWwkITN4NkpiYlUoKTRXRmZdbDckJCIzJTN2VzMoZnZhJCpGZl1sJCEzVVQuRldnWHpsRmZdbDckJCIzTkxFNid6K0JDIkZdW2wkITNrcHYpSCR5LlwoKUZmXWw3JCQiMztdKm9UPl5mJj1GXVtsJCEzdi1BL1QsIykzOEZdW2w3JCQiM1kkR0RBZiwncENGXVtsJCEzTGdjeSlcT0Z1IkZdW2w3JCQiM0srekwpUS1wcCRGXVtsJCEzKCpSREY5I3AwaCNGXVtsNyQkIjNPTC9YJT0uVSNcRl1bbCQhM3dnJGYoSD5TeU1GXVtsNyQkIjNZXGNud1ohKXl0Rl1bbCQhM2AySnRndDE5X0ZdW2w3JCQiMyEqSF5MYjRFdTlGaXMkITMlW1ZsYE8xQC8iRmlzNyRGYmluJCEzVyh6YTZ1bjUyKEZeam4tRmBpbTYjIiIiRmZpbi1GJjYlN1M3JEZgam1GZGluNyQkITNHWilIPCdbdihlJUZmXWwkIjMhSDJ3KGV5ITR4J0ZmXWw3JCQhMytWQjxzMUFgQ0ZmXWwkIjMvKHlhJmUxQV9QRmZdbDckJCEzWGlKWHdjXzU7RmZdbCQiMysmeWttJypwL2MjRmZdbDckJCEzM00/d3Mwcyc+IkZmXWwkIjMzJ2VYbzxoXyg+RmZdbDckJCEzdExYdTMleixgKkZpYGwkIjNsXlRrNE9oSTtGZl1sNyQkITNxby0yaUhpOyEpRmlgbCQiMythUEAvV2M7OUZmXWw3JCQhM0dfLCdIOyZcJSlvRmlgbCQiM0VUJ0hhTmRrRCJGZl1sNyQkITNkbCFSeldQcisnRmlgbCQiMzsjNG11QiFRSzZGZl1sNyQkITMlSEpoRFNiK0wmRmlgbCQiM3NRW0t3amlPNUZmXWw3JCQhM0snXCI0XWZId1pGaWBsJCIzYXRLRk4nSEplKkZpYGw3JCQhM1E/aEtHQSdlUCVGaWBsJCIzT1c2N04zJG8sKkZpYGw3JCQhM0krKyshW3olKSpSRmlgbCQiMydHcktVLkpKWylGaWBsNyQkITM1KysrK1UnPmwkRmlgbCQiM2Msc29EVzMkKnpGaWBsNyQkITMvKysrP0QuPUxGaWBsJCIzc21eI1xyTDNfKEZpYGw3JCQhM1NMTExqMHo5SUZpYGwkIjNbOG03RlspPjQoRmlgbDckJCEzIXBtbW1hMVVsI0ZpYGwkIjN3WztRPz8vI2UnRmlgbDckJCEzPW5tbSdlVyhbQkZpYGwkIjMvImVnUGRgKzonRmlgbDckJCEzUysrKzUoPk0qPkZpYGwkIjNjTCs4OSRbdmsmRmlgbDckJCEzVW5tbScpcCopeTtGaWBsJCIzczd2NjhndS1fRmlgbDckJCEzbCoqKioqKjRkIlFMIkZpYGwkIjM7KltNOlJGWnIlRmlgbDckJCEzKikqKioqKipIbkAwNUZpYGwkIjNdQmxWZCM9K0QlRmlgbDckJCEzcWttbW07ZUJtRltibCQiM01vWj5GSTlsUEZpYGw3JCQhM1dubW1tKHBdWiRGW2JsJCIzVmh1Oy9pKCk+TEZpYGw3JCQhMz8iW0xMTEx1KnlGW11uJCIzQEdUMiN5JmZSR0ZpYGw3JCQiM2NgbW1tVmhbTUZbYmwkIjMjPnNzUVM+Mk0jRmlgbDckJCIzeCIqKioqKipwIVI+bEZbYmwkIjM/Kkc2LDBZayE+RmlgbDckJCIzQWVtbW1LImYkKSpGW2JsJCIzXVk7dUkqPXVWIkZpYGw3JCQiM1cqKioqKipmMEFFOEZpYGwkIjMiSF1oNEEhb0cmKkZbYmw3JCQiM00pKioqKio+a1RoO0ZpYGwkIjNZJlFHJDNcSCl5JUZbYmw3JCQiM3UpKioqKipcY3QmKT5GaWBsJCIzPUBRJUdzJEc8P0ZhYmw3JCQiM2UpKioqKipmbyRlTSNGaWBsJCEzU0tfIXl4cjMqW0ZbYmw3JCQiMz9LTEw4UVNwRUZpYGwkITNTZEU/OiYqem0lKkZbYmw3JCQiM3AqKioqKioqZiEpWywkRmlgbCQhM0FXJDQoM3pETjlGaWBsNyQkIjMlZm1tbSJSJHpLJEZpYGwkITNvQV8pWzojKXooPUZpYGw3JCQiM3MqKioqKip6UT1xT0ZpYGwkITMleSJIdiVwJyo+TyNGaWBsNyQkIjNtSkxMQldAIypSRmlgbCQhM0wjSExtbDt1IkdGaWBsNyQkIjMhUWJHaGMjR2VWRmlgbCQhM19FcSMqKT06XkwkRmlgbDckJCIzeW0iXFhHYXV5JUZpYGwkITNvQ1dxYGMwVVJGaWBsNyQkIjMoW2hlJylHSXhMJkZpYGwkITNWeVd3VE1FP1pGaWBsNyQkIjNJcyF5Xm4lPS1nRmlgbCQhM18hZmVuJVElKmZjRmlgbDckJCIzW2xFNydISHgob0ZpYGwkITNrVzc7QzQ6KSpvRmlgbDckJCIzRkMrc2ElZjQvKUZpYGwkITMkZS42MXoxS2EpRmlgbDckJCIzLGFrbUwtZT8mKkZpYGwkITMzN21MYzFkajVGZl1sNyQkIjNxLUBaM2pdMTdGZl1sJCEzdERgMHNbVEI5RmZdbDckJCIzd28oKTRCIjRiZSJGZl1sJCEzI0ckem4jejAlZj5GZl1sNyQkIjNHMyEqb11mKFJRI0ZmXWwkITNZcDVPNCUzJykzJEZmXWw3JCQiM1V2QlUmKXpQLVlGZl1sJCEza25xbmBFIWZBJ0ZmXWw3JEZiaW5GY2ptRl9pbS1GZGltNiZGZmltRmppbUZnaW1GamltLUYmNiU3YW83JEZgam1GX19wNyQkITMrcU52YjozbzlGaXMkITNZUikpendSV1E1RmlzNyQkITMrXXl3eXhTU3RGXVtsJCEzI0c7WjRsKClSPiZGXVtsNyQkITNLTF8lZT0wTypbRl1bbCQhM1VfbkVYcCRRWSRGXVtsNyQkITMrRFJRKilRP3FPRl1bbCQhM11abFUjZmgoKWYjRl1bbDckJCEzbTtFI0hmLW9XI0ZdW2wkITNmVWplUmlvTDxGXVtsNyQkITN1Vj5wVz41Tj1GXVtsJCEzeUVpO2omWzZJIkZdW2w3JCQhM3IiSGhrSCxNQSJGXVtsJCEzJyllN1luKTNobylGZl1sNyQkITNzPShmTXM0YjwqRmZdbCQhM3QoemdgWz9NXydGZl1sNyQkITNhZWtJI1sxcTYnRmZdbCQhM0UkSGdLNUsyTyVGZl1sNyRGaV9wJCEzPWErQDd6UXpLRmZdbDckJCEzY09aMCFHT3A+JEZmXWwkITNTRnRxaDEkZkgjRmZdbDckRl5gcCQhM2c2JSo0N1YvcTxGZl1sNyRGY2BwJCEzQTVXOm0qb1Q8IkZmXWw3JEZoYHAkITNONCJbQ3JYYyIpKUZpYGw3JEZdYXAkITNdTjRXd3lTIzQoRmlgbDckRmJhcCQhMzpbKilHXD07QWdGaWBsNyRGZ2FwJCEzXyRRb2BnRTtBJkZpYGw3JEZcYnAkITMuUTFiOjVDLFlGaWBsNyRGYWJwJCEzc3JWJSk0PFpBVEZpYGw3JEZmYnAkITNPOm8mZWsvNHQkRmlgbDckRltjcCQhM3ddMnlYX3ZaTUZpYGw3JEZgY3AkITNjTWxMWGAhND0kRmlgbDckRmVjcCQhM1B6UDFUPyllJEhGaWBsNyRGamNwJCEzI0d3I28mb2MoKnAjRmlgbDckRl9kcCQhM3kmWyR5VEFMJlsjRmlgbDckRmRkcCQhMyhIKzYlUTNPSUFGaWBsNyRGaWRwJCEzNXAvNTptTzk/RmlgbDckRl5lcCQhM08mPiZHJilSNmo8RmlgbDckRmNlcCQhM1JOKnlaJEdyUzpGaWBsNyRGaGVwJCEzO0J1KVJfLm5IIkZpYGw3JEZdZnAkITN5UyVRcCYqW1YxIkZpYGw3JEZiZnAkITMhNGp2Ij1NNj4jKUZbYmw3JEZnZnAkITMhPjRSSUl6RipmRltibDckRlxncCQhMyNlVXNEPng4ZiRGW2JsNyRGYWdwJCEzZSdSbDpJJipwNCJGW2JsNyRGZmdwJCIzQ3A8Q245UHU1RltibDckRltocCQiM0ckKSoqM2txXT5NRltibDckRmBocCQiMyFRWTx0Z2hBJWVGW2JsNyRGZWhwJCIzYEFTampVWDcjKUZbYmw3JEZqaHAkIjMzLWM7YFBkXTVGaWBsNyRGX2lwJCIzLiQzcTF3Ll9JIkZpYGw3JEZkaXAkIjNHYSpSdjkrU2AiRmlgbDckRmlpcCQiMzMkXE1oNypHeTxGaWBsNyRGXmpwJCIzYUtDQVw3bCoqPkZpYGw3JEZjanAkIjNNIUdjIj4mZTtDI0ZpYGw3JEZoanAkIjNlbms0KyZvJHBDRmlgbDckRl1bcSQiM1hNTENteEBHRkZpYGw3JEZiW3EkIjNKTD9qKSp6b0pJRmlgbDckRmdbcSQiM2pnP20jKj16P01GaWBsNyRGXFxxJCIzQTsiZl40SzEqUUZpYGw3JEZhXHEkIjM9Vy8nUWpOKDRYRmlgbDckRmZccSQiM3hSYDNuTkVLYEZpYGw3JEZbXXEkIjNBIylHWWBNXnlqRmlgbDckRmBdcSQiM2lcazBLWHR4IilGaWBsNyRGZV1xJCIzcVtwXjgqb2QzIkZmXWw3JEZqXXEkIjMlb15lPUFxLmwiRmZdbDckJCIzdSIqSCMpKVFvNDkkRmZdbCQiM3clKipwIjNaayY9I0ZmXWw3JEZfXnEkIjM0O2wsV3QsPktGZl1sNyQkIjN2bUpjISlSXU9oRmZdbCQiM1xIXlBRIzNRSSVGZl1sNyQkIjMkM3ZXMyhmdi8jKkZmXWwkIjMnKWZCNEYrUnRrRmZdbDckJCIzTkxFNid6K3RBIkZdW2wkIjMyKWU0ZSI9KEhrKUZmXWw3JCQiMzxdKm9UPl40JT1GXVtsJCIzcy9XS1JOQClIIkZdW2w3JCQiM1kkR0RBZixZWCNGXVtsJCIzLml5MSgqKUhAdCJGXVtsNyQkIjNNK3pMKVEtPm8kRl1bbCQiM21UWmI3RScqKmYjRl1bbDckJCIzTkwvWCU9LiM0XEZdW2wkIjNbaTovR2B6bk1GXVtsNyQkIjNZXGNud1ohUU8oRl1bbCQiMyEpNGAsZjJZLl9GXVtsNyQkIjMhKkheTGI0d3M5RmlzJCIzMmJPPjBkL1Q1RmlzNyRGYmluRlxqbkZhX3BGZF5xLSUrQVhFU0xBQkVMU0c2JFEhNiJGX15yLSUlVklFV0c2JDskISQrIkZpaW0kRmhpbUZbam1GZF5y