Exercice 5 On d\351fnit la param\351trisation ,restart; x:=t->(1-t^2)/(1+t^2);y:=t->t*(1-t^2)/(1+t^2); NiM+SSJ4RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiYsJiIiIkYuKiQ5JCIiIyEiIkYuLCZGLkYuRi9GLkYyRiVGJUYl NiM+SSJ5RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKig5JCIiIiwmRi5GLiokRi0iIiMhIiJGLiwmRi5GLkYwRi5GMkYlRiVGJQ== Domaine d'Etude R\351duisons l'intervalle d'\351tude \340 0..infinity , En effet[x(-t),y(-t)]=[x(t),-y(t)]; NiMvNyQqJiwmIiIiRicqJEkidEc2IiIiIyEiIkYnLCZGJ0YnRihGJ0YsLCQqKEYpRidGJkYnRi1GLEYsRiQ= evalb(%); NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ= Donc la partie de courbe correspondant aux param\351tres n\351gatifs se d\351duira par sym\351trie / \340 l'axe Ox Calculons le vecteur vitesse Vt:=[D(x)(t),D(y)(t)]; NiM+SSNWdEc2IjckLCYqJkkidEdGJSIiIiwmRipGKiokRikiIiNGKiEiIiEiIyooLCZGKkYqRixGLkYqRitGL0YpRipGLywoKiZGMUYqRitGLkYqKiZGKUYtRitGLkYvKihGKUYtRjFGKkYrRi9GLw== Vt:=simplify(Vt); NiM+SSNWdEc2IjckLCQqJkkidEdGJSIiIiwmRipGKiokRikiIiNGKiEiIyEiJSwkKiYsKCEiIkYqKiRGKSIiJUYqRixGNUYqRitGLkYz V:=unapply(Vt,t); NiM+SSJWRzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlNyQsJComOSQiIiIsJkYwRjAqJEYvIiIjRjAhIiMhIiUsJComLCghIiJGMCokRi8iIiVGMEYyRjtGMEYxRjRGOUYlRiVGJQ== Cette courbe est donc r\351guli\350re Tangente aux points M(0)=(1,0) et M(1)=(0,0) Ces tangentes sont dirig\351es par les vecteurs V(0);V(1); NiM3JCIiISIiIg== NiM3JCEiIkYk D'o\371 les \351quations des tangentes XT0:=x(0)+t*op(1,V(0));YT0:=y(0)+t*op(2,V(0)); NiM+SSRYVDBHNiIiIiI= NiM+SSRZVDBHNiJJInRHRiU= XT1:=x(1)+t*op(1,V(1));YT1:=y(1)+t*op(2,V(1)); NiM+SSRYVDFHNiIsJEkidEdGJSEiIg== NiM+SSRZVDFHNiIsJEkidEdGJSEiIg== EqT0:=[XT0,YT0,t=-infinity..infinity]:EqT1:=[XT1,YT1,t=-infinity..infinity]: Branches Infinies \351ventuelles Limit('x'(t),t=+infinity)=limit(x(t),t=+infinity),Limit('y'(t),t=+infinity)=limit(y(t),t=+infinity) ; NiQvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkLUkieEdGKTYjSSJ0R0YpL0YuSSlpbmZpbml0eUdGJyEiIi8tRiU2JC1JInlHRilGLUYvLCRGMEYx D'o\371 une asymptote verticale d'\351quation param\351trique XA:=-1;YA:=t; NiM+SSNYQUc2IiEiIg== NiM+SSNZQUc2IkkidEdGJQ== EqA:=[XA,YA,t=-infinity..infinity]: Position Relative: pour cela on \351tudie le signe de x(tau)-(-1) pour tau grand assume(tau,real):is(x(tau)+1>0); NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ= On a donc l'arc est \340 droite de cette asymptote ... Par sym\351trie / Ox on a la m\352me asymptote et la m\352me position relative pour t->infinity Etude des variations de x et y plot(x); LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdnbzckJCEjNSIiISQhMyE9ISk+ISk+ISk+ISkqISM9NyQkITMhcG1tbSJwMGsmKiEjPCQhMzdqRyR5UztQeSpGLzckJCEzdUtMJDM8WFo9KkYzJCEzdyVvUHMncHBsKCpGLzckJCEzV21tbVQlcCJlKClGMyQhM1R2YUhuIT1FdSpGLzckJCEzL25tbSI0bShHJClGMyQhM05GWSU9SCJ5OigqRi83JCQhM09MTCQzaS45IXpGMyQhMzsocHAlPUVxJW8qRi83JCQhM2ZtbTsvUj0wdkYzJCEzWSx1Jz4uSDZsKkYvNyQkITNrKytdUDgjXDQoRjMkITMuUSY9VExDL2gqRi83JCQhM0ttbTsvc2lxbUYzJCEzeVdXNmZKVGcmKkYvNyQkITNRKioqKlwoeSRwWmlGMyQhM0pVXGs7MVUrJipGLzckJCEzaktMTCR5YUUiZUYzJCEzMjBCR149MkQlKkYvNyQkITM8bW1tIj5zJUhhRjMkITM8IlIiUjpUIlFNKkYvNyQkITNdKioqKioqXCQqNCkqXEYzJCEzJVEqKltSZzEtQipGLzckJCEzbyoqKioqKlxfJlxjJUYzJCEzNUZPbmElKj4lMypGLzckJCEzJSkqKioqKipcMWFaVEYzJCEzPSg0Z3BHRDchKilGLzckJCEzSW1tOy8jKVtvUEYzJCEzKzNua10xTSVvKUYvNyQkITMlSExMTD1leEokRjMkITN3bSI9YC54VkwpRi83JCQhM2xLTExMMiRmJEhGMyQhM15bJSlSbTIkNCN6Ri83JCQhMyUpKioqKlxQWXgiXCNGMyQhM0RgNSZRTW5jQShGLzckJCEzZ0xMTEw3aSk0I0YzJCEzN0BIRi9CPSpIJ0YvNyQkITM5bW1UTmElSCk9RjMkITMhb2JwLC9HK2cmRi83JCQhM28pKioqXFAncHNtIkYzJCEzO01gIio0ISlwM1pGLzckJCEzJSopKioqKlxGJio9WSJGMyQhM21gKVxpLWlaaSRGLzckJCEzPyoqKipcNzRfYzdGMyQhM1c+XTVFJiplV0FGLzckJCEzR0skZTloeCRcNkYzJCEzZy5ZYEUuRyRRIkYvNyQkITNQbG1UNVZCVTVGMyQhM19uekFaL0tNVCEjPjckJCEzXSUpKlxQNDU0TipGLyQiMyg0RXBtUyUzLG5GaHM3JCQhM006TEwkM3gleiMpRi8kIjM5X3BGM00kZic9Ri83JCQhMycqPUxlOXJjJkgoRi8kIjMjeSVHMmlabl9JRi83JCQhM2dBTCRlOWQ7SidGLyQiMypcJSpmdnBrQkklRi83JCQhM0JFTDN4cnVGYEYvJCIzX0FQYzhzOnliRi83JCQhMygpSExMM3MkUU0lRi8kIjNqaDIqNG9iXyNvRi83JCQhM2FrbVQmUWRERyRGLyQiMyNHdl9uUSZlYSEpRi83JCQhMz4qKioqXGl2RkBBRi8kIjMzISlwYUNmZWYhKkYvNyQkITMnUUwkZVJ4KipmNkYvJCIzM11tJCo9VVhNKCpGLzckJCEzXV5vbW07enIpKiEjPyQiM1siPjFYOV4hKSoqKkYvNyQkIjNVQSQzX11cKG88RmhzJCIzVSJRTXMrWFAqKipGLzckJCIzKSpITDN4InlZXyVGaHMkIjNFL18iKkgjUSJmKipGLzckJCIzYVAkZSpbb2chRyhGaHMkIjMzYFI9PVhhJSopKkYvNyQkIjNeTUwzX05sLjVGLyQiMytMTykpZl1hKykqRi83JCQiMy1PJGVrR1JbYiJGLyQiMydwLnZTIXohel8qRi83JCQiM2FQTCQzLURnNSNGLyQiMyczPCIpekYwMToqRi83JCQiM2NTTGUqWydSM0tGLyQiM1luVWJPVVFMIilGLzckJCIzZlZMTGV6dzVWRi8kIjNBYW4vMVAnZSdvRi83JCQiM1czK11pYlFxX0YvJCIzY293UCtPRl9jRi83JCQiM0p0bW1tSitJaUYvJCIzJSlRRl5YKHl5UyVGLzckJCIzPVFMJDN4PycqPShGLyQiM0dATXhPJkdaPSRGLzckJCIzLS4rK3YkUSNcIilGLyQiM2ttbUgmRy0mPT9GLzckJCIzaVJMM3g7bCY9KkYvJCIzI29yL1M+c1FaKUZoczckJCIzaW5tInpcMUEtIkYzJCEzK0I4MjUkKipmPiNGaHM3JCQiM0csXTdHeSVlNyJGMyQhMy1vUVEnKkglKXo2Ri83JCQiMyVcTEwkZSIqW0g3RjMkITNTYC5EZ24zUD9GLzckJCIzY25tO0hDalY5RjMkITNRciIqR1NEMjpORi83JCQiMz0rKysrZHhkO0YzJCEzJz5cNWFITVRtJUYvNyQkIjNRKytdN0pGbj1GMyQhMzt5Ll9MJypRVWJGLzckJCIzZSsrK0QweHc/RjMkITMmeXRSSEZKY0InRi83JCQiMzUsK11pJnBAWyNGMyQhM2ZhcyEqPidlcj8oRi83JCQiMysrKyt2Z0hLSEYzJCEzNV8jND93NWoiekYvNyQkIjNFbG1tbVp2T0xGMyQhM1lFUC9IKEg8TilGLzckJCIzJTQrKyt2KydvUEYzJCEzK3NeVWlTVCVvKUYvNyQkIjNVS0wkZVI8KmZURjMkITNaJ2ZfMTkoUjIqKUYvNyQkIjNLLSsrXSlIeGUlRjMkITMnKUd3RzUhZUc0KkYvNyQkIjMhZm1tIkghby0qXEYzJCEzcHgoPlsmPil5QSpGLzckJCIzWCwrXTdrLjZhRjMkITMzalxTeElbUiQqRi83JCQiMyNlbW1tVDlDI2VGMyQhM3J6TXBsQyVwVSpGLzckJCIzMyoqKipcaSEqM2BpRjMkITMpekUjeVozRSwmKkYvNyQkIjM7TkxMTCp6eW0nRjMkITNJRjgqMyMpZStjKkYvNyQkIjMnZUxMJDNOMSM0KEYzJCEzT0RhZUNrNjUnKkYvNyQkIjMscG07SFl0N3ZGMyQhM1skPnd1dTw9bCpGLzckJCIzNy0rKyt4RyoqeUYzJCEzLyNIcnpNT1hvKkYvNyQkIjNncG1tVDZLVSQpRjMkITM2JVtXZzQicDsoKkYvNyQkIjNxTkxMTGJkUSgpRjMkITNbJEcsKipbeDl1KkYvNyQkIjNbKytdaWAxaCIqRjMkITN3ZlhPOiUpXGsoKkYvNyQkIjNBLStdUD9XbCYqRjMkITN3Jkg/Uk95UHkqRi83JCQiIzVGLEYtLSUmQ09MT1JHNiYlJFJHQkckRlxjbCEiIiRGLEZiY2xGY2NsLSUrQVhFU0xBQkVMU0c2JFEhNiJGZ2NsLSUlVklFV0c2JDskISQrIkZiY2xGW2NsOyQhMUtxWyMzKXo+NSEjOiQiMjduTnI8MCVSNSEjOw== plot(y); LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdpbjckJCEjNSIiISQiMyE9ISk+ISk+ISk+ISkqISM8NyQkITMhcG1tbSJwMGsmKkYvJCIzI1shUjVlPz9kJCpGLzckJCEzdUtMJDM8WFo9KkYvJCIzOS9lJ2YhUWFwKilGLzckJCEzV21tbVQlcCJlKClGLyQiMzt6OylRKSpcRmApRi83JCQhMy9ubW0iNG0oRyQpRi8kIjNzIVxjeChwLyM0KUYvNyQkITNPTEwkM2kuOSF6Ri8kIjN1X3FpTFdGX3dGLzckJCEzZm1tOy9SPTB2Ri8kIjM5T2R4RSlcTEMoRi83JCQhM2srK11QOCNcNChGLyQiM0Mmb2NxWT8mPW9GLzckJCEzS21tOy9zaXFtRi8kIjNRIT1FLUAmUnhqRi83JCQhM1EqKioqXCh5JHBaaUYvJCIzZ15cXycpPWROZkYvNyQkITNqS0xMJHlhRSJlRi8kIjMxVzsneiopbyV5YUYvNyQkITM8bW1tIj5zJUhhRi8kIjM/Lj9PISp5PnRdRi83JCQhM10qKioqKipcJCo0KSpcRi8kIjNuO2p2aSpbTGglRi83JCQhM28qKioqKipcXyZcYyVGLyQiMykzJmZFKlInKm85JUYvNyQkITMlKSoqKioqKlwxYVpURi8kIjM5IlxaN1A+PXAkRi83JCQhM0ltbTsvIylbb1BGLyQiMycpPUZISU5vc0tGLzckJCEzJUhMTEw9ZXhKJEYvJCIzKVxBIj5oWjlsRkYvNyQkITNsS0xMTDIkZiRIRi8kIjNUdnVPMi9gREJGLzckJCEzJSkqKioqXFBZeCJcI0YvJCIzWi8/a2lNWis9Ri83JCQhM2dMTExMN2kpNCNGLyQiM3N1JVFPeGY+SyJGLzckJCEzbykqKipcUCdwc20iRi8kIjNXLiYpM0MjcDEmeSEjPTckJCEzPyoqKipcNzRfYzdGLyQiMycpPiVIJnpPUD9HRl5yNyQkITNQbG1UNVZCVTVGLyQiM1FnImUuaUkqM1YhIz43JCQhM006TEwkM3gleiMpRl5yJCEzSDBiRypHJipbYSJGXnI3JCQhMycqPUxlOXJjJkgoRl5yJCEzJ0dycDBPKjRGQUZecjckJCEzZ0FMJGU5ZDtKJ0ZeciQhM0RETnQpMzBiciNGXnI3JCQhM0JFTDN4cnVGYEZeciQhM202Iip5TTYhPihIRl5yNyQkITMoKUhMTDNzJFFNJUZeciQhMykzaFokZSp6WidIRl5yNyQkITNha21UJlFkREckRl5yJCEzL1JheHVRJ1JrI0ZecjckJCEzPioqKipcaXZGQEFGXnIkITMiPXF0UlwmUTc/Rl5yNyQkITMnUUwkZVJ4KipmNkZeciQhMzwnUi8hKlslPkg2Rl5yNyQkITNdXm9tbTt6cikqISM/JCEzNT9YNyh6bilwKSpGZXU3JCQiM2FQTCQzLURnNSNGXnIkIjNEJXo+ck9TciM+Rl5yNyQkIjNmVkxMZXp3NVZGXnIkIjM3PDUuRlhyZkhGXnI3JCQiM1czK11pYlFxX0ZeciQiMykzL3R5Nm0qeUhGXnI3JCQiM0p0bW1tSitJaUZeciQiM1EzRkdhKTRodSNGXnI3JCQiMz1RTCQzeD8nKj0oRl5yJCIzSSY9WFAvKnAqRyNGXnI3JCQiMy0uKyt2JFEjXCIpRl5yJCIzJCp6a0xHYyNcayJGXnI3JCQiM2lubSJ6XDFBLSJGLyQhMztEYTxrWndXQUZpcjckJCIzJVxMTCRlIipbSDdGLyQhMyhvPTdqM3dYXSNGXnI3JCQiMz0rKysrZHhkO0YvJCEzek4ib2tcKTNLeEZecjckJCIzZSsrK0QweHc/Ri8kITNJWzRDQnYqXEgiRi83JCQiMzUsK11pJnBAWyNGLyQhMzlJViVlKCpRKil5IkYvNyQkIjMrKysrdmdIS0hGLyQhMzMqKj5mKHAnSEBCRi83JCQiM0VsbW1tWnZPTEYvJCEzY04pSCQpUm5ueSNGLzckJCIzJTQrKyt2KydvUEYvJCEzUzBtKlskKjNHRiRGLzckJCIzVUtMJGVSPCpmVEYvJCEzIT5vKnBKT1MwUEYvNyQkIjNLLSsrXSlIeGUlRi8kITMleiIzYzZ3YnJURi83JCQiMyFmbW0iSCFvLSpcRi8kITNeOGhnSC8nXGclRi83JCQiM1gsK103ay42YUYvJCEzMyNldzBJR08wJkYvNyQkIjMjZW1tbVQ5QyNlRi8kITNnIjRNPGRjKClbJkYvNyQkIjMzKioqKlxpISozYGlGLyQhM1x4RXNHSUFUZkYvNyQkIjM7TkxMTCp6eW0nRi8kITM5aTJMUENgdWpGLzckJCIzJ2VMTCQzTjEjNChGLyQhM0M4UGMrY2I6b0YvNyQkIjMscG07SFl0N3ZGLyQhMyskKXBlVVg6XnNGLzckJCIzNy0rKyt4RyoqeUYvJCEzVWRLUCYpUTRdd0YvNyQkIjNncG1tVDZLVSQpRi8kITNKPHd2YmQoZjUpRi83JCQiM3FOTExMYmRRKClGLyQhM215bzwmb2pFXilGLzckJCIzWysrXWlgMWgiKkYvJCEzcVMjPTojM0tYKilGLzckJCIzQS0rXVA/V2wmKkYvJCEzKSo9RXklWzsnZSQqRi83JCQiIzVGLCQhMyE9ISk+ISk+ISk+ISkqRi8tJSZDT0xPUkc2JiUkUkdCRyRGZl5sISIiJEYsRl5fbEZfX2wtJStBWEVTTEFCRUxTRzYkUSE2IkZjX2wtJSVWSUVXRzYkOyQhJCsiRl5fbEZlXmw7JCEyI2ZTZlNmUz41ISM6JCIyI2ZTZlNmUz41Rl5gbA== varx:=D(x)(t)/abs(D(x)(t)); NiM+SSV2YXJ4RzYiKiYsJiomSSJ0R0YlIiIiLCZGKkYqKiRGKSIiI0YqISIiISIjKigsJkYqRipGLEYuRipGK0YvRilGKkYvRiotSSRhYnNHSSpwcm90ZWN0ZWRHRjQ2I0YnRi4= vary:=D(y)(t)/abs(D(y)(t))/2; NiM+SSV2YXJ5RzYiLCQqJiwoKiYsJiIiIkYrKiRJInRHRiUiIiMhIiJGKywmRitGK0YsRitGL0YrKiZGLUYuRjBGLyEiIyooRi1GLkYqRitGMEYyRjJGKy1JJGFic0dJKnByb3RlY3RlZEdGNjYjRihGLyNGK0Yu On trace en rouge le signe x' et en vert le signe de y' plot([varx,vary],t=-5..5,discont=true,thickness=[3,3]); LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JjdTNyQkISImIiIhJCIiIkYsNyQkITNlUVlRSFUsIipbISM8Ri03JCQhM1dnZjYkSCc9J3olRjJGLTckJCEzWyJlUDVPVSYqbyVGMkYtNyQkITNBJEdfUF8iPiNlJUYyRi03JCQhM0tKd0QxNE52V0YyRi03JCQhM1F1ISpHeGZId1ZGMkYtNyQkITNlUnYjZUxJUEYlRjJGLTckJCEzJ0hOMUYhb2xuVEYyRi03JCQhMydHOl4oW00jPjElRjJGLTckJCEzJWYrRnpwakomUkYyRi03JCQhM3VJPj9dIW90JlFGMkYtNyQkITNBXTQrU1tfXFBGMkYtNyQkITNOQXZAOilRN2skRjJGLTckJCEzKSlIaVVsXilvYCRGMkYtNyQkITMqR1VkVDBBQFckRjJGLTckJCEzPGFXPFwmUiVITEYyRi03JCQhMyR5T2xvbyMpUkIkRjJGLTckJCEzdzciSEptVkg3JEYyRi03JCQhM3VBU0c3YGxDSUYyRi03JCQhMzlsOGE4dSJvIkhGMkYtNyQkITNBUm5cSy04OUdGMkYtNyQkITM2ZiRwOyRwKXBxI0YyRi03JCQhMzxUNipcJGZmM0VGMkYtNyQkITNqSTwiSCZ6WS1ERjJGLTckJCEzMTBzRDEzQiNSI0YyRi03JCQhMyc+WUtnL3BpSCNGMkYtNyQkITMjNFRKZ3JGRT4jRjJGLTckJCEzKykpKUczM2NiMyNGMkYtNyQkITM/JlEpeXV0ITMpPkYyRi03JCQhM3ElMztjaGQlej1GMkYtNyQkITMxW2hyKClmI3B3IkYyRi03JCQhMzM2PCs6OCJlbSJGMkYtNyQkITNZK1ZRPilceWIiRjJGLTckJCEzdUQ7N2UxLWc5RjJGLTckJCEzW2tReld2MWA4RjJGLTckJCEzI3lZLi0rTENEIkYyRi03JCQhMzM9MGUvNENaNkYyRi03JCQhM3pTWHUua1JXNUYyRi03JCQhMy1dYSxEdUZuJCohIz1GLTckJCEzbmZnK10tSUkkKUZfc0YtNyQkITNlJClwaTk4JSlwc0Zfc0YtNyQkITNOKipwazlOOz1pRl9zRi03JCQhM2dKa1xSM3leX0Zfc0YtNyQkITM+TFxhUHM+V1RGX3NGLTckJCEzS1gmZi5FaE46JEZfc0YtNyQkITMjcEtiJipvT3Q0I0Zfc0YtNyQkITNZMnMyL11SJzMiRl9zRi03JCQhMy0rKysrKysrNSEjREYtN1M3JCQiMy0rKysrKysrNUZbdSQhIiJGLDckJCIzIXloYGgheSYpKjMiRl9zRmB1NyQkIjNrI1JTKW9yOFE/Rl9zRmB1NyQkIjNsIT1DJypbd1g1JEZfc0ZgdTckJCIzUWtyWmlbM3lURl9zRmB1NyQkIjMxJm9CdS4iXFlfRl9zRmB1NyQkIjNRYCM0cktTcUInRl9zRmB1NyQkIjMpb2dDPHUncGlzRl9zRmB1NyQkIjNxcGskSDJLTUspRl9zRmB1NyQkIjN1cCUpWzdjdyFRKkZfc0ZgdTckJCIzKyUqSDI3aiRvLyJGMkZgdTckJCIzVXAhKXpmPmpVNkYyRmB1NyQkIjN1XCEqKipwXlpdN0YyRmB1NyQkIjNleEN5JT5oKGU4RjJGYHU3JCQiM0dxUGRXWzZqOUYyRmB1NyQkIjNFeEQlZSZ6KHliIkYyRmB1NyQkIjN3WGIjM1lnMG4iRjJGYHU3JCQiMzdLWThCdCxtPEYyRmB1NyQkIjM9KCkzKG9NY3EoPUYyRmB1NyQkIjM/eGZyKHBXYCg+RjJGYHU3JCQiMyFbamVrZiM9JDMjRjJGYHU3JCQiM3NnS114KHBlPSNGMkZgdTckJCIzIzNrSSR5SSwkSCNGMkZgdTckJCIzd2UpM10yLzlSI0YyRmB1NyQkIjNJcCMpM2Q/YChcI0YyRmB1NyQkIjMnW3pVUD9weGcjRjJGYHU3JCQiMyl6YG5SJzR0LkZGMkZgdTckJCIzLCplb1JIc3QhR0YyRmB1NyQkIjMmPjZyIkhSVzlIRjJGYHU3JCQiM3U5O0BORT4+SUYyRmB1NyQkIjNCOlJRJVJVMDckRjJGYHU3JCQiMyk9JlFHQVMyTEtGMkZgdTckJCIzJikpRykqXHApPU1MRjJGYHU3JCQiM1wqcDoxPl1AVyRGMkZgdTckJCIzP3UkeT1OeipSTkYyRmB1NyQkIjNZTmg/bEMkcGskRjJGYHU3JCQiMzdLbHo0cWNaUEYyRmB1NyQkIjMnPVs+YTVmRiZRRjJGYHU3JCQiMzlmYUQxT2diUkYyRmB1NyQkIjMlXFgpXG5BRmpTRjJGYHU3JCQiMydSUioqXCkqcHA7JUYyRmB1NyQkIjNlLHRgeWUsdFVGMkZgdTckJCIzKytgYGVPPXlWRjJGYHU3JCQiM3ljLjBFPiNbWiVGMkZgdTckJCIzaTFiQydHIWUmZSVGMkZgdTckJCIzU1hTJ1IpUWslbyVGMkZgdTckJCIzQ25XL1RqRSF6JUYyRmB1NyQkIjM9ekFmNDBPIipbRjJGYHU3JCQiIiZGLEZgdS0lKlRISUNLTkVTU0c2IyIiJC0lJkNPTE9SRzYmJSRSR0JHJCIjNUZhdSRGLEZhdUZcX2wtRiY2JzdTNyRGKiQhMysrKysrKysrXUZfczckJCEzWXdtKlx4LzshXEYyRmFfbDckJCEzNCVwUGVoIipmIltGMkZhX2w3JCQhM0A+RU9rMXI+WkYyRmFfbDckJCEzST9IQys6ekFZRjJGYV9sNyQkITM7WUEqZihITEVYRjJGYV9sNyQkITNIKUhoa2QucFYlRjJGYV9sNyQkITNTJCkqKj44WUlXVkYyRmFfbDckJCEzIWUlNCRIalEmW1VGMkZhX2w3JCQhMyNIPHZgeHpJOiVGMkZhX2w3JCQhMyFwKFIqcGcpKVswJUYyRmFfbDckJCEzIUhEUEN4LCVvUkYyRmFfbDckJCEzPUx1MiIzUTUoUUYyRmFfbDckJCEzLXpqLzBZRnRQRjJGYV9sNyQkITN5byllMlFoIXpPRjJGYV9sNyQkITMnKT53SlpuXSRmJEYyRmFfbDckJCEzX2pZODhTeCJcJEYyRmFfbDckJCEzUigpcChILyRmME1GMkZhX2w3JCQhM0sxPydwM1dgSSRGMkZhX2w3JCQhMzpmb051bmc7S0YyRmFfbDckJCEzclk6S3l5Qz5KRjJGYV9sNyQkITNgKWVBZj1SbC0kRjJGYV9sNyQkITNfalo9IlIyKUhIRjJGYV9sNyQkITMjZT88c1N4NCVHRjJGYV9sNyQkITNlJT4lKipvQTtYRkYyRmFfbDckJCEzQS9YdG9zalhFRjJGYV9sNyQkITMhPXZPTVkrIWZERjJGYV9sNyQkITM/UkJBUy5WbENGMkZhX2w3JCQhM3kxKCk0Wkt3b0JGMkZhX2w3JCQhMzVIOWliTD51QUYyRmFfbDckJCEzKT4lUiNINyNwIz0jRjJGYV9sNyQkITMheltZWGcmNCIzI0YyRmFfbDckJCEzc1htNDltISkqKT5GMkZhX2w3JCQhM193bGFKaEwjKj1GMkZhX2w3JCQhM1FWU1IoUThTIT1GMkZhX2w3JCQhM3ByOSUqKUhgdXEiRjJGYV9sNyQkITNyZjciM3koZjs7RjJGYV9sNyQkITMhKSpmUGJlRjtfIkYyRmFfbDckJCEzcUlqb2dveEc5RjJGYV9sNyQkITNVcVZzYzJkSjhGMkZhX2w3JCQhM20pXCpRRChcekIiRjJGYV9sNyQkITNuQ1cnKSlwM0E5IkYyRmFfbDckJCEzISl6dlBjL0VaNUYyRmFfbDckJCEzM1s7dkMpRyxnKkZfc0ZhX2w3JCQhM3RNTCoqb0o8KycpRl9zRmFfbDckJCEzPSI+RCo0NCFlcShGX3NGYV9sNyQkITN1ciRwMGE4QXYnRl9zRmFfbDckJCEzUnYiKjNgKDMmUmVGX3NGYV9sNyQkITN1KioqKio+IkdvZVtGX3NGYV9sN1M3JCQhMzMrKystRm9lW0ZfcyQiMysrKysrKysrXUZfczckJCEzJSp5Xj4henJvayVGX3NGZ2hsNyQkITNJJmYhUVtpZGlXRl9zRmdobDckJCEzSSQzVG5qO2BEJUZfc0ZnaGw3JCQhMyd6XGVRPCRvWVNGX3NGZ2hsNyQkITNoM2pTNDgvUlFGX3NGZ2hsNyQkITM7VC4wQDJgWU9GX3NGZ2hsNyQkITNbJj5jdTooPlpNRl9zRmdobDckJCEzQD92JDM1WTVDJEZfc0ZnaGw3JCQhM2o2PkZ0aGJOSUZfc0ZnaGw3JCQhM1tBeiVbXyU9Q0dGX3NGZ2hsNyQkITNhJzNrPUUzIVFFRl9zRmdobDckJCEzT1dBWiYpeVRHQ0Zfc0ZnaGw3JCQhM2wzeiYzInAnekAjRl9zRmdobDckJCEzcSRvKj4sJWVeLCNGX3NGZ2hsNyQkITMqSGNGXSUpKSk0JD1GX3NGZ2hsNyQkITNOaCF5JUhNKj5oIkZfc0ZnaGw3JCQhMz4lb0pvZXZrVSJGX3NGZ2hsNyQkITNEZC4mR0J1MUAiRl9zRmdobDckJCEzS2RZV29NbD41Rl9zRmdobDckJCEzK2g1SFpUdCsiKSEjPkZnaGw3JCQhM0suXUVBay4waEZlXG1GZ2hsNyQkITMtMChSJzNfdEFTRmVcbUZnaGw3JCQhM0c1TFdxRWA1QEZlXG1GZ2hsNyQkITNFOSNlM00hUid6JSEjQEZnaGw3JCQiM00sIVw2UGxXNCNGZVxtRmdobDckJCIzSzcoM0ZOYyVmUkZlXG1GZ2hsNyQkIjNlNzIqZXEocHRmRmVcbUZnaGw3JCQiMyFIJWZRPGhnYSEpRmVcbUZnaGw3JCQiMzEmNCVlLXAuNDVGX3NGZ2hsNyQkIjMjZSdcbkp1KzE3Rl9zRmdobDckJCIzQSpcdTtpNFpVIkZfc0ZnaGw3JCQiM1xQPmNtS0FAO0Zfc0ZnaGw3JCQiM0JCcFpGTi9KPUZfc0ZnaGw3JCQiM15IJSlHcD08QD9GX3NGZ2hsNyQkIjNGMVdPbUIuSEFGX3NGZ2hsNyQkIjMqNGRsXipHaENDRl9zRmdobDckJCIzYCllSTwhNDBIRUZfc0ZnaGw3JCQiM211TCxAayMqR0dGX3NGZ2hsNyQkIjMlUVQuaWN4IlFJRl9zRmdobDckJCIzKCllKjQiKkc2KFJLRl9zRmdobDckJCIzYWdDJSpHJzNlVyRGX3NGZ2hsNyQkIjNDWlt1eSQqPl1PRl9zRmdobDckJCIzX1A2aF1LLFFRRl9zRmdobDckJCIzOXRXYlUicEswJUZfc0ZnaGw3JCQiM3UzRlJ5bHpYVUZfc0ZnaGw3JCQiM0U2cSczKTQyXldGX3NGZ2hsNyQkIjN1KVtla3hXdmslRl9zRmdobDckJCIzMysrKy1Gb2VbRl9zRmdobDdTNyQkIjN1KioqKio+IkdvZVtGX3NGYV9sNyQkIjNvTksuaV1qVWVGX3NGYV9sNyQkIjN5aUlpYG13KXAnRl9zRmFfbDckJCIzMTJRUG9oZGh3Rl9zRmFfbDckJCIzRSd6cSY0eXdJJylGX3NGYV9sNyQkIjMlKVJ2Ml9JTiZmKkZfc0ZhX2w3JCQiM1MsKFFacWsqWzVGMkZhX2w3JCQiM0k7KytvT2NUNkYyRmFfbDckJCIzTWEhcCNbJ0h0QiJGMkZhX2w3JCQiMypwI1sjZV0peUs4RjJGYV9sNyQkIjN6QWc/dSd6NFYiRjJGYV9sNyQkIjNEWkZ3M2xZPDpGMkZhX2w3JCQiM3RtRDcrLSRbaCJGMkZhX2w3JCQiM28/Tzp3T2Y3PEYyRmFfbDckJCIzTko2VytwIW8hPUYyRmFfbDckJCIzIyl6QilRYGhCKj1GMkZhX2w3JCQiM2lPYDFvVTQlKj5GMkZhX2w3JCQiM3U3SUFRX0YhMyNGMkZhX2w3JCQiMyNRKnpCJT5DMD0jRjJGYV9sNyQkIjMpNDlWb11oI3BBRjJGYV9sNyQkIjNXYCV5R1M/bU8jRjJGYV9sNyQkIjNpNnVGJjRIJGZDRjJGYV9sNyQkIjNpT18sISozMWNERjJGYV9sNyQkIjNLJXojKVIoMypbayNGMkZhX2w3JCQiM2QwZT83Z3FTRkYyRmFfbDckJCIzI2ZcbEMsSi0lR0YyRmFfbDckJCIzTVtLdzx5J28jSEYyRmFfbDckJCIzJTRteDQlelY/SUYyRmFfbDckJCIzTyRILFQuMHI2JEYyRmFfbDckJCIzL3ImeWIjXG42S0YyRmFfbDckJCIzOmVnRmVoPC5MRjJGYV9sNyQkIjNDN05sd0V4L01GMkZhX2w3JCQiM1VhTDVuOzEnXCRGMkZhX2w3JCQiM2dCTWxcQGAkZiRGMkZhX2w3JCQiM3djZiFRKlsmPW8kRjJGYV9sNyQkIjNZRyZlQSlcVHlQRjJGYV9sNyQkIjNVUygpUSswRnBRRjJGYV9sNyQkIjNNK0NtJnBTVSdSRjJGYV9sNyQkIjMrcE9ePzk0ZFNGMkZhX2w3JCQiM3NIY1pDdkhhVEYyRmFfbDckJCIzLywwImViPXpDJUYyRmFfbDckJCIzLnZiTCNlZk9NJUYyRmFfbDckJCIzTD9DI1sjeWdRV0YyRmFfbDckJCIzTE5bcylSYmVfJUYyRmFfbDckJCIzbm0xSWs0JmVpJUYyRmFfbDckJCIzLSJbMi0+KUc6WkYyRmFfbDckJCIzKEgxVnIjcGs1W0YyRmFfbDckJCIzZyMzIiplUzw+IVxGMkZhX2w3JEZgXmxGYV9sRmJebC1GZ15sNiZGaV5sRlxfbEZqXmxGXF9sLSUrQVhFU0xBQkVMU0c2J1EidDYiUSFGY1tuLSUlRk9OVEc2JCUqSEVMVkVUSUNBR0ZbX2wlK0hPUklaT05UQUxHRmlbbi0lJVZJRVdHNiQ7JCEjXUZhdSQiI11GYXU7JCEkLyIhIiMkIiQvIkZlXG4= Support de la courbe total:=[x(t),y(t),t=-infinity..infinity]: partiel:=[x(t),y(t),t=0..infinity]: plot([total,partiel,EqT0,EqT1,EqA],-1..1.1,-2..2,color=[blue,red,black,black,magenta],thickness=[1,2,1,1,2]); LSUlUExPVEc2KS0lJ0NVUlZFU0c2JTdqczckJCEyQ0knUj8yKioqKioqISM8JCIzaW0/ViQ+ITNvOSEjOTckJCEzdXZvaiIpRycqKioqKiEjPSQiMzIzZFBLMFFTdCEjOjckJCEzZz5uKFFbOyoqKioqRjMkIjNvTT1OO1ZjJCpbRjY3JCQhMyNHO3V0X14pKioqKkYzJCIzWVZJIXBSXCxuJEY2NyQkITNjZzNcNyFvKCoqKipGMyQiM3B0Lz4nKlw0T0hGNjckJCEzJTN6InBSZm0qKioqRjMkIjN5JXlmXCYzc1lDRjY3JCQhMyFwQ1gmNGBhKioqKkYzJCIzcSZ5ISlcK2tyNCNGNjckJCEzOUdHc0FoUyoqKipGMyQiMy4+dDppSCpcJD1GNjckJCEzUUolKioqeiRbIyoqKipGMyQiM1VIMUJDIno1aiJGNjckJCEzJz5DYEEzcyEqKioqRjMkIjMjKT0xJylIYCV6WSJGNjckJCEzPT5kWUlzKCkpKioqRjMkIjNUXHQ2XChwV0wiRjY3JCQhM0klZUBkI1FtKSoqKkYzJCIzXFNvc0d5QkI3RjY3JCQhM20uKTMjcD1WKSoqKkYzJCIzNV1UVjtrNkg2RjY3JCQhM1d1Jj1BTyI9KSoqKkYzJCIzV1deI1woKlElWzVGNjckJCEzYy9gOTFCInoqKipGMyQiMyEzZyZ6LHI7JnkqISM7NyQkITMnXGYnWy1aaSgqKipGMyQiMyM9bztwRUlMPCpGYnA3JCQhMzc6SyVHYj10KioqRjMkIjM/MyNbLUFlTWopRmJwNyQkITN3KTM+KmVRKnAqKipGMyQiM2cjXDY9JG9iYCIpRmJwNyQkITNNZzdfQTFsJyoqKkYzJCIzM1RJcV5xOkN4RmJwNyQkITNTdylmYiUpKUcnKioqRjMkIjMmKjRkMlNPb1B0RmJwNyQkITNnZCJbK2AzZioqKkYzJCIzeSxEKSpmVSspKXBGYnA3JCQhMytxQjV5JzRiKioqRjMkIjM5ciIqKlthLCxuJ0ZicDckJCEzLyZ6VD5IIzQmKioqRjMkIjNvZidcUXJJKXpqRmJwNyQkITNrKygpKVFQY1kqKipGMyQiM0x2LXYjeVBQNidGYnA3JCQhMyV6SW9qIz4/JSoqKkYzJCIzT282LjA5IypvZUZicDckJCEzd2IoMz4mKkdQKioqRjMkIjM5Xzg+JmZFSGsmRmJwNyQkITNbcDU5YHVCJCoqKkYzJCIzUCVbVCRwP21MYUZicDckJCEzN0AiKnpLdXMjKioqRjMkIjMiKXl1WylITiRSX0ZicDckJCEzdUo+JSlRPWwiKioqRjMkIjMhKlI7UEQqPiYqKVtGYnA3JCQhM09QTydSPi0wKioqRjMkIjM7UXo5LHZSJGUlRmJwNyQkITNXSS47PF5LKSkqKkYzJCIzLzJ1N1FzKkc4JUZicDckJCEzIz5ebCk+UyNmKSoqRjMkIjNRPzFhbSMqemlQRmJwNyQkITNZIVErUDEqSCQpKipGMyQiMzd0eSMzXkJMWCRGYnA3JCQhM0lAeEdEL1ghKSoqRjMkIjMpUisqZTBrbyE+JEZicDckJCEzOy0kUUkpRzN1KipGMyQiM1N4OyZ5Jm8kKm9GRmJwNyQkITMlUTBUXDVCbycqKkYzJCIzNUxFcFo7M1hDRmJwNyQkITN1I1tFSEImZmQqKkYzJCIzLWI1dm1oQmdARmJwNyQkITNtaiM9OV9XcyUqKkYzJCIzZFZWKTNaU1UkPkZicDckJCEzbz9BYXdXeE4qKkYzJCIzQyFlPzlWNDB2IkZicDckJCEzTmUkKT54Kik9QioqRjMkIjM7JlwyUzFiIilmIkZicDckJCEzZytDYDdgWyUqKSpGMyQiM0lyInBhJmZqZThGYnA3JCQhM2UkKil5OkE8OCcpKkYzJCIzVSsnZiQ+VDchPSJGYnA3JCQhM102Nl94Rj4jeSpGMyQiM2I+LDI9X2dBJCpGLDckJCEzbW1eR3dHYyRwKkYzJCIzb2UqSFEoUSc0eChGLDckJCEzTzFZcVVddSdlKkYzJCIzKXo/LnYpKiopKipmJ0YsNyQkITM5a1FqeiYzMlkqRjMkIjNRKnB2I3p3PCRvJkYsNyQkITMuN2paPXUlKj4kKkYzJCIzKUdxViozT2VuXEYsNyQkITNXW3IrR0Y3ZyIqRjMkIjNxaEAiKTNkOXZWRiw3JCQhM24oPlonSFNOMiEqRjMkIjNkQyVcdi0lXFRSRiw3JCQhMzRZRSQpZXJvQSkpRjMkIjMuJT0wak5MeF8kRiw3JCQhM3BwVS0pcCMqXGcpRjMkIjNUL1lXRkReVUpGLDckJCEzJ1x3ZSU+JkhZTClGMyQiMyFlaHIoeXJYbEZGLDckJCEzJXB4RCdRYmo8ISlGMyQiMyhmXDRpPlxyVCNGLDckJCEzX3VEPm1lI1JeKEYzJCIzc0w7X0E2TiUqPkYsNyQkITM2PSllIUdhIjQkcEYzJCIzcmooSCM0XSp5aSJGLDckJCEzMUc7SVdtJyl5ZkYzJCIzI0dDQDcxUj0+IkYsNyQkITMneTQlPj0pM0V3JUYzJCIzNXAiUU5mSGYqekYzNyQkITM7JjNLcSFmNyMpUUYzJCIzJUczKDMwXSd5JWVGMzckJCEzXG0zIW9DTEwhR0YzJCIzdywkW1wjKkgiUlBGMzckJCEzJTNxP0E8RktiIkYzJCIzVFVvRHJWXzs9RjM3JCQhM1g0VUNbSTcuXyEjPyQiMzB2T01PakVJX0ZnXmw3JCQiM09IJWVMOVxFUCkhIz4kITMteHY8eiRvJylwKEZdX2w3JCQiMzlyKykzVjIhKXoiRjMkITNdbXkoeS1jIipcIkYzNyQkIjN4I1FAcnAlcEJHRjMkITNWYSUpZj4jSEI2I0YzNyQkIjN4UFl1ImVoNyFSRjMkITM/eDkoKm9DLiVlI0YzNyQkIjMuQ0J0cG1BPVxGMyQhMyVwRSwuQSswKEdGMzckJCIzZiZ5bnNFLW8kZkYzJCEzUT8hKUdPW28oKkhGMzckJCIzVFkiXHA1JkhEcEYzJCEzLShRQGxyKHBeSEYzNyQkIjNyLi9DSmksWHlGMyQhMyI0Rz5DKHk+RUZGMzckJCIzdzdqckE6eChRKkYzJCEzZSgqR2kqcEYjbztGMzckJCIzV0whSCgpb18oKSoqKkYzJCEzMVdFZHgjW2sqeUZnXmw3JCQiM0deQE0iKXAlelcqRjMkIjNvZnEwPiE0PWYiRjM3JCQiM1NLMSdwYEdVKHlGMyQiMyZ6KnkqZXc8YnIjRjM3JCQiMyw4KVxhOnEvLSdGMyQiMzdgPm1dUWcrSUYzNyQkIjMmKjNKQDtmJVsuJUYzJCIzISlvIzRVcHQvaiNGMzckJCIzWzpWRihSW3ApSEYzJCIzb0tGUS9hJ1w+I0YzNyQkIjNVQFh3QzY0Jik+RjMkIjN3J3pfdFZRTGkiRjM3JCQiM1RgZ2VwRkZVNUYzJCIzMydHPTtGQ3ZRKkZdX2w3JCQiMyc+JVIxPnhLYTtGXV9sJCIzJD5hTmZSIz1GO0ZdX2w3JCQhM2VaazkmeTguViJGMyQhM01Gc0giKnkoPWwiRjM3JCQhM08iPSFvVDlqXUZGMyQhM3MmcFE0KFIlemskRjM3JCQhMy15JHl0aDY0IlFGMyQhM1lBY3pQLSJHcCZGMzckJCEzS2VKTEM9RyJvJUYzJCEzK2RZZipbZXZ4KEYzNyQkITM1SSQzKkhQKlImZkYzJCEzaVZiJDR3MEI9IkYsNyQkITMkXEJSMSx0VyNwRjMkITMneUVWQ1NvVmkiRiw3JCQhMzJJLVBiJ3knUXZGMyQhM1QqKVIsYnhQNz9GLDckJCEzO28rei9BdTwhKUYzJCEzNyFHLUhhYHNUI0YsNyQkITNdaSN5TDIwUE0pRjMkITNLRGZWNSpIbngjRiw3JCQhM2sxJyk9WFEmeWgpRjMkITNdQjJHRTMiSDskRiw3JCQhM0leb0VMdT8+KSlGMyQhM1tYY3U2biIzXyRGLDckJCEzXy9vNnU3dCoqKilGMyQhMyopPUQ9Ij5QQiNSRiw3JCQhM1NiSW9mKHBROypGMyQhMy0+WFNhMjsoUSVGLDckJCEzZjJEMiRRTj1LKkYzJCEzY3E6LDJWdXZcRiw3JCQhMyFlPCpHYUElKWYlKkYzJCEzIXlrSDMtc3puJkYsNyQkITNRQD1ZOyVbZmUqRjMkITM/OT9dRGUmSGYnRiw3JCQhMyVlL1ZbdydRJnAqRjMkITM5M0tSKD1AZ3ooRiw3JCQhMztrNG5TImU8eSpGMyQhMz4jemQvSyxHSipGLDckJCEzQ007KSpvQ2FqKSpGMyQhM0ElKTNGQEUvIT4iRmJwNyQkITNDOlhoNChcUyopKkYzJCEzbyZcVFdnbGROIkZicDckJCEzJ3A/SCJbY3Y/KipGMyQhM2lcVSIpZVslSGQiRmJwNyQkITNGblhmOSVHTSQqKkYzJCEzTyFcM3RpISkpPTxGYnA3JCQhMyZHNyhmcHgrWCoqRjMkITM9RUhzQUwnUio9RmJwNyQkITNNcyFbSygpKltiKipGMyQhM05SPyRIJipwejUjRmJwNyQkITNTVzl1VjcoWycqKkYzJCEzMTIjeidSOGd2QkZicDckJCEzeXhWT3BsIkcoKipGMyQhM3p3Zj9wWUMuRkZicDckJCEzP3RxJlxCWyh6KipGMyQhM15AN1d0dGdNSkZicDckJCEzT2puWXJLJEcpKipGMyQhM0tTJClSXEMmZlMkRmJwNyQkITNTalEmSDdrYykqKkYzJCEzJTRGZSRcUVRHUEZicDckJCEzIyp5MyI0OyUpcCkqKkYzJCEzd0w+Yz0jZk4iUkZicDckJCEzXyZ6W0hkUyMpKSoqRjMkITNeLD1pdSwoejYlRmJwNyQkITNtZ2ouTkxWKikqKkYzJCEzek1TQG9MI1tNJUZicDckJCEzKXphYlZVaTAqKipGMyQhM3UnPiVRY1cuKWYlRmJwNyQkITM/UyV6PHkvPCoqKkYzJCEzQkosRyQqMzgwXEZicDckJCEzKXpERnBidEYqKipGMyQhMyMqbzlbWSZmZ0QmRmJwNyQkITNPKzxxVi5HJCoqKkYzJCEzXVdfL2FbK15hRmJwNyQkITNfKCpbPEUob1AqKipGMyQhMz1TaFdIYiQ0bSZGYnA3JCQhMyM0YFo7cVFVKioqRjMkITMzOVdCOilcdyllRmJwNyQkITNhRz1fbi1wJSoqKkYzJCEzNmtWNmhjQ0xoRmJwNyQkITM5MjtJQE03JioqKkYzJCEzbSFbdHcoZT0ra0ZicDckJCEzRS5CZmciUWIqKipGMyQhM1leL0pmNVEicCdGYnA3JCQhM1MvNTUkW01mKioqRjMkITM0YyRHJSo+J0g1cUZicDckJCEzZSZbT21RN2oqKipGMyQhM3FBZD0hSCozaHRGYnA3JCQhMytPIzQicD1uJyoqKkYzJCEzaS8tZiFwJHpbeEZicDckJCEzLypbSiZHSCwoKioqRjMkITMjKVFtJlJHaCZ6IilGYnA3JCQhMy1dcyxqYkwoKioqRjMkITMzdVZrYjkqNG0pRmJwNyQkITNlP0J5cShSdyoqKkYzJCEzKipcaldQTWUtIypGYnA3JCQhM1tFVjldYiN6KioqRjMkITNXKWVMKCplcGoiKSpGYnA3JCQhM2dQRl8qKkc+KSoqKkYzJCEzcTZMLTQ/eV41RjY3JCQhM0UjKilRdSI9VykqKipGMyQhM1tnczk8bHJLNkY2NyQkITM3OmdeLUJuKSoqKkYzJCEzRUNacFp5OEY3RjY3JCQhM1VTI3pNTiUpKSkqKipGMyQhMztXQnpDVXNROEY2NyQkITM9Q2M6cHoyKioqKkYzJCEzb0tDQmleaXM5RjY3JCQhM0NrVFpbSkQqKioqRjMkITNyVTBpWSl5aWoiRjY3JCQhM184ZVkhKik0JSoqKipGMyQhM0YmeSQpeWJVMyU9RjY3JCQhM2kmXGpVPlsmKioqKkYzJCEzYi4wXWsiXFE1I0Y2NyQkITNhN0A1ZiFvJyoqKipGMyQhM19OJ2ZSNj9YWCNGNjckJCEzO2YmPVZbcCgqKioqRjMkITNFNzh4NlNYWEhGNjckJCEzNUs8TnBDJikqKioqRjMkITNfeksqKm8hWz1vJEY2NyQkITMxTER1OHEiKioqKipGMyQhMyI0XDVbV2kiNFxGNjckJCEzMyMpUTg8SicqKioqKkYzJCEzdXpJJm9oeFBPKEY2NyQkITJ3cnEjejIqKioqKipGLCQhM0NCQE0oZmZGWiJGLzckJCIiIkkqdW5kZWZpbmVkR0kqcHJvdGVjdGVkR0ZfaG1GXGhtLSUqVEhJQ0tORVNTRzYjRl1obS0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIkZnaG0kIiM1RmlobS1GJjYlN2pwNyQkRl1obUZoaG0kRmhobUZoaG03JCQiMyxrI3plNyl6NCUqRjMkIjMqNCw7TWNhM2siRjM3JCQiMygzPVY1UTE5IykpRjMkIjNkIjNiKVxdWTJBRjM3JCQiMy8sIkhnJ1xleCEpRjMkIjN0OlBpZ2c2TUVGMzckJCIzKjRMdzomb3gvckYzJCIzPiY9bCZHbC1CSEYzNyQkIjNiQzMwdigqelRnRjMkIjM0SGU+Tm06LElGMzckJCIzJSp5IlwwI3pqSlxGMyQiMyczYWp4JGVCdEdGMzckJCIza0dPUSZlNkcjUUYzJCIzUV5dbVFcX2JERjM3JCQiM2MuOmtiP0teRkYzJCIzKz9bP1ZNU3U/RjM3JCQiMzZKISpwKilcY0s8RjMkIjNhRjhpWD1RYTlGMzckJCIzTS01PyhwIj5oJSlGXV9sJCIzLSx6MCpwW0p4KEZdX2w3JCQiMzk/Ikc1XDZkMiNGZ15sJCIzd2sjXF9QMjkyI0ZnXmw3JCQhM0U6WSpILjUwXCJGMyQhMytKekJkJj4/dCJGMzckJCEzMXp6P18oUiEqeSNGMyQhM3YkZioqNEIsVnIkRjM3JCQhMzlNMyp5OSJSXlFGMyQhMy83JCpScyZSMXkmRjM3JCQhMyk0KCp5ZCxOVnUlRjMkITNTK1gkUVRuayV6RjM3JCQhM0szU3ZqXz8lUiZGMyQhMydmSFFaMVk8JykqRjM3JCQhM3g/ZDE6PVYtZ0YzJCEzNztWKlFxVTQ/IkYsNyQkITNwOm12VWhQMmxGMyQhMylRZVE7QTpaVCJGLDckJCEzMFhec0J5bjhwRjMkITMjXCJSKm90IVs9O0YsNyQkITNWV0JDMihlc0EoRjMkITNrJHpHYSIqcDkhPUYsNyQkITMzJDQyTCh6Sld2RjMkITN4LSZ5Okc9bCwjRiw3JCQhM2kkeSwoR0YnUXgoRjMkITNdNFZTIj4vbT4jRiw3JCQhM2lIRiE9YlVSKylGMyQhM3RHdnB5aCJRUyNGLDckJCEzSUZpWSVSNys9KUYzJCEzI1JBKXlcXUwmZSNGLDckJCEzL0pxTyllLyVbJClGMyQhM0c2b252LGcjeSNGLDckJCEzYSlIZCVRUlspWylGMyQhMz1UIz4/RmIob0hGLDckJCEzSHZJT2B4Km9oKUYzJCEzR1k7VnJhUWhKRiw3JCQhMyFSJVIuKCozQ0AoKUYzJCEzPyEzb2Z2aHBMJEYsNyQkITMiUS9NVUdTOCMpKUYzJCEzbVpMTjtHMERORiw3JCQhM0g/MCEzKjRTPCopRjMkITNpTjVQcjJsRlBGLDckJCEzKT09N1RZXSMpKiopRjMkITNYXyZvZlhSJz1SRiw3JCQhM3VKJj4wbCNlIzMqRjMkITMoPTlgJG94S1VURiw3JCQhMylvOmomKTReajsqRjMkITMnZmZyOkVmXlIlRiw3JCQhM3d1ZCdvQjJcQypGMyQhMyFbaVBfJT5DbllGLDckJCEzXlRReE46ajwkKkYzJCEzVysoPnhHPHcmXEYsNyQkITNRelk1UyUpXCVSKkYzJCEzKWYrX3o/Z29KJkYsNyQkITMnKWVcZ24iKioqZiUqRjMkITM7XFBUL1MiKnljRiw3JCQhM1wyKCkpW0xAaF8qRjMkITMtRU1FemoiXDYnRiw3JCQhM28jeSE0NWljI2UqRjMkITNNSiE+KHknM0xjJ0YsNyQkITNdazFOQVpVUycqRjMkITNTRyYzTShlJ1s3KEYsNyQkITN1MUVxaHM3InAqRjMkITN2KCk0JDQjNCV5dChGLDckJCEzPD00OEBzPVMoKkYzJCEzQSxtTEp3NCFcKUYsNyQkITMjKWY+OCE0LFV5KkYzJCEzPXcmb2YzJEdvJCpGLDckJCEzJmZbNlVxTWcjKSpGMyQhMyFvZ2g2WXUqWzVGYnA3JCQhM08iUnZPbW9AJykqRjMkITMjb25VQjoiKlE9IkZicDckJCEzIzQnPTU8WCZbKikqRjMkITM5akcnZWgjM2g4RmJwNyQkITNJQD5kU24nSCMqKkYzJCEzKUdbSFlZLmVmIkZicDckJCEzXDklZlJLKilcJSoqRjMkITNDUVVqdjhrJCo9RmJwNyQkITMxNCkpb10scmwqKkYzJCEzYi5AL0wlUVpTI0ZicDckJCEzKSpmRSkpb25TdCoqRjMkITM6Km9ZdWF6S3QjRmJwNyQkITNVJlwjb2spSCwpKipGMyQhM1M6SC4hUjxaOyRGYnA3JCQhMy8yd3deYUokKSoqRjMkITM7P1M+aWgtYk1GYnA3JCQhMyVvJylbQ2BCaSkqKkYzJCEzO09CJlI/RE8hUUZicDckJCEzU0daJ1InUSYpKSkqKkYzJCEzKSkzLyg+JilvK0IlRmJwNyQkITMhZkxbbUExNyoqKkYzJCEzOyJ5U0QyZlB3JUZicDckJCEzaSIqKT54Pyg+JCoqKkYzJCEzU2o9RFYiUXZUJkZicDckJCEzR2gzIjNATFwqKipGMyQhMz8sM3JfUXZ5aUZicDckJCEzYW9tSWBicSYqKipGMyQhM1koZWVLWClvP29GYnA3JCQhM1tmbihINTlrKioqRjMkITMpW2FTPUdiW1koRmJwNyQkITNNLFNAXld1JyoqKkYzJCEzKCl6Wk0pKXl3TXlGYnA3JCQhM2UpZV5pJSllcSoqKkYzJCEzP0g5M3g6QFYjKUZicDckJCEza25TZSdHZHQqKipGMyQhMyFcbDhSbFJscClGYnBGW2NtRmBjbUZlY203JCQhMz1MP11pJz4kKSoqKkYzJCEzSUI4REYydiE0IkY2RmpjbTckJCEzJSoqUmtUT2YmKSoqKkYzJCEzTXM4SEYhUiF5NkY2Rl9kbTckJCEzd2l2TEsxeSkqKipGMyQhMytdXWFTYl0hRyJGNkZkZG03JCQhMylSaCh6bE0pKikqKipGMyQhM1d2dT0qKm9bLTlGNkZpZG03JCQhMy0hZUFNJ3k7KioqKkYzJCEzb0whKnomb1gsYiJGNkZeZW03JCQhM0tLQz5DUUwqKioqRjMkITMhUjpSPV9XRHQiRjZGY2VtNyQkITN1NCIqPVo4WyoqKipGMyQhMzUjKSopKm9Vek4nPkY2RmhlbTckJCEzdUBsZkovaCoqKipGMyQhM1FYVUU8eXBsQUY2Rl1mbTckJCEzSW4wcXc1cyoqKipGMyQhM0NGLiJIXXN3biNGNkZiZm03JCQhM1VSIiopPUc4KSoqKipGMyQhM0s3VCNRLFRGRiRGNkZnZm03JCQhM0FQQGxZcSkpKioqKkYzJCEzPFRmSTk0JXk/JUY2RlxnbTckJCEzaXI5ZXFCJSoqKioqRjMkITNbRHZmcik0NSplRjZGYWdtNyQkITNpcDVQYCN6KioqKipGMyQhMypSXTwhKipmUT0pKkY2RmZnbTckJCEyQSlvIltwKCoqKioqKkYsJCEzW0BObko3X1hIRi9GW2htLUZhaG02IyIiIy1GZGhtNiZGZmhtRmpobUZnaG1GZ2htLUYmNiU3UzckRmBpbSRGaWhtRmhobTckRmBpbSQhMyFSTEwkZSVHP3kqRjM3JEZgaW0kITNPbW1UJmVzQmYqRjM3JEZgaW0kITN5S0wkM3MlM3okKkYzNyRGYGltJCEzM0xMJGUvJFFrIipGMzckRmBpbSQhMyFwbTsvIj1xXSopRjM3JEZgaW0kITMnR0wkM18+Zl8oKUYzNyRGYGltJCEzKSkqKipcKG8xWVomKUYzNyRGYGltJCEzME1MMy1PSk4kKUYzNyRGYGltJCEzcCoqKlxQKm8lUTcpRjM3JEZgaW0kITNhbW1tIlJGaiF6RjM3JEZgaW0kITNKTEwkZTRPWnIoRjM3JEZgaW0kITM9KysrdidcISpcKEYzNyRGYGltJCEzMysrK0R3WiNHKEYzNyRGYGltJCEzWyoqKioqXEtxUDIoRjM3JEZgaW0kITNPTEwzLVRDJSlvRjM3JEZgaW0kITNPbm1tIjR6KWVtRjM3JEZgaW0kITMrbm1tbWAnelknRjM3JEZgaW0kITMhMytdKD10KWVDJ0YzNyRGYGltJCEzcW5tbTsxSlxnRjM3JEZgaW0kITN5KioqXCg9W2pMZUYzNyRGYGltJCEzXCsrRGMvRUdjRjM3JEZgaW0kITM1bm07YVEoUlQmRjM3JEZgaW0kITNzbW1UZz0+PF9GMzckRmBpbSQhM1ZMTCRlKmUkXCsmRjM3JEZgaW0kITM7TUwzLTtZJXklRjM3JEZgaW0kITNdKytEIjNRRGYlRjM3JEZgaW0kITMnUUxMM1ViX1ElRjM3JEZgaW0kITNPKysrXUA2clRGMzckRmBpbSQhMy8sK11QWmhoUkYzNyRGYGltJCEzeSsrdj1fIiplUEYzNyRGYGltJCEzKjMrK0QnPiZRYCRGMzckRmBpbSQhM1BubW07RWlKTEYzNyRGYGltJCEzPysrK0QnKnA6SkYzNyRGYGltJCEzekxMMy04Lz9IRjM3JEZgaW0kITM8Kysrdl04MUZGMzckRmBpbSQhM3NubVQmKWYnW10jRjM3JEZgaW0kITNnKyt2JHoiWyVII0YzNyRGYGltJCEzM25tbSJ6I3opMyNGMzckRmBpbSQhM1krK3ZvYVh0PUYzNyRGYGltJCEzM0xMTEwrMW07RjM3JEZgaW0kITNpTEwkZUNvUlgiRjM3JEZgaW0kITMkb207YW9LT0MiRjM3JEZgaW0kITNFKysrXWhOXTVGMzckRmBpbSQhM2FubW0iSCVSKUcpRl1fbDckRmBpbSQhMzBQTExMQjcyakZdX2w3JEZgaW0kITNpKCoqKlwoPXRZPiVGXV9sNyRGYGltJCEzI3kqKipcNykqeXNARl1fbEZfaW1GYGhtLUZkaG02JkZmaG1GZ2htRmdobUZnaG0tRiY2JTdTNyQkIjMrKysrKysrK11GM0ZbW3A3JCQiM01MTExlJUc/eSVGM0ZeW3A3JCQiM09tbVQmZXNCZiVGM0ZhW3A3JCQiM0tMTCQzcyUzelZGM0ZkW3A3JCQiMzNMTCRlLyRRa1RGM0ZnW3A3JCQiMyFwbTsvIj1xXVJGM0ZqW3A3JCQiM1NMTDNfPmZfUEYzRl1ccDckJCIzKSkqKipcKG8xWVpORjNGYFxwNyQkIjNdTEwzLU9KTkxGM0ZjXHA3JCQiM0MrK3YkKm8lUTckRjNGZlxwNyQkIjNhbW1tIlJGaiFIRjNGaVxwNyQkIjNKTEwkZTRPWnIjRjNGXF1wNyQkIjM9KysrdidcISpcI0YzRl9dcDckJCIzMysrK0R3WiNHI0YzRmJdcDckJCIzLSsrK0QueHQ/RjNGZV1wNyQkIjNPTEwzLVRDJSk9RjNGaF1wNyQkIjMhb21tOzR6KWU7RjNGW15wNyQkIjMrbm1tbWAnelkiRjNGXl5wNyQkIjNFKyt2PXQpZUMiRjNGYV5wNyQkIjM5bm1tOzFKXDVGM0ZkXnA3JCQiMyZ5KioqXCg9W2pMKUZdX2xGZ15wNyQkIjNNKioqKlxpWGcjRydGXV9sRmpecDckJCIzV2xtbVQmUShSVEZdX2xGXV9wNyQkIjM7bm07Lyc9PjwjRl1fbEZgX3A3JCQiM3ZETUxMZSplJFwhI0BGY19wNyQkITNbZW07elJRYkBGXV9sRmdfcDckJCEzJ1sqKipcKD0+WTIlRl1fbEZqX3A3JCQhM1FobW0ielh1OSdGXV9sRl1gcDckJCEzXScqKioqKipceSkpRylGXV9sRmBgcDckJCEzJyopKioqXGlfUVE1RjNGY2BwNyQkITNAKioqXDd5JTNUN0YzRmZgcDckJCEzNSoqKipcUCFbaFkiRjNGaWBwNyQkITNrS0xMJFF4JG87RjNGXGFwNyQkITMhKSoqKioqXFArVik9RjNGX2FwNyQkITM/bW0ienBlKno/RjNGYmFwNyQkITMlKSoqKioqXCNcJ1FII0YzRmVhcDckJCEzR0tMZTlTOCZcI0YzRmhhcDckJCEzUioqKlxpPz1icSNGM0ZbYnA3JCQhMyJITEwkM3M/NkhGM0ZeYnA3JCQhM2EqKipcN2BXbDckRjNGYWJwNyQkITMjcG1tbScqUlJMJEYzRmRicDckJCEzUW1tO2E8LllORjNGZ2JwNyQkITM9TExlOXRPY1BGM0ZqYnA3JCQhM3UqKioqKipcUWtcUkYzRl1jcDckJCEzQ0xMJDNkZzY8JUYzRmBjcDckJCEzSW1tbW14R3BWRjNGY2NwNyQkITNBKytEIm9LMGUlRjNGZmNwNyQkITNBKyt2PTVzI3klRjNGaWNwNyQkITMrKysrKysrK11GM0ZcZHBGYGhtRmVqby1GJjYlN1M3JEZnYW8kITItKysrISoqKioqKioqIiQiSDckRmdhbyQhM0daKUg8J1t2KGUlRmJwNyRGZ2FvJCEzK1ZCPHMxQWBDRmJwNyRGZ2FvJCEzWGlKWHdjXzU7RmJwNyRGZ2FvJCEzM00/d3Mwcyc+IkZicDckRmdhbyQhM3RMWHUzJXosYCpGLDckRmdhbyQhM3FvLTJpSGk7ISlGLDckRmdhbyQhM0dfLCdIOyZcJSlvRiw3JEZnYW8kITNkbCFSeldQcisnRiw3JEZnYW8kITMlSEpoRFNiK0wmRiw3JEZnYW8kITNLJ1wiNF1mSHdaRiw3JEZnYW8kITNRP2hLR0EnZVAlRiw3JEZnYW8kITNJKysrIVt6JSkqUkYsNyRGZ2FvJCEzNSsrKytVJz5sJEYsNyRGZ2FvJCEzLysrKz9ELj1MRiw3JEZnYW8kITNTTExMajB6OUlGLDckRmdhbyQhMyFwbW1tYTFVbCNGLDckRmdhbyQhMz1ubW0nZVcoW0JGLDckRmdhbyQhM1MrKys1KD5NKj5GLDckRmdhbyQhM1VubW0nKXAqKXk7Riw3JEZnYW8kITNsKioqKioqNGQiUUwiRiw3JEZnYW8kITMqKSoqKioqKkhuQDA1Riw3JEZnYW8kITNxa21tbTtlQm1GMzckRmdhbyQhM1dubW1tKHBdWiRGMzckRmdhbyQhMz8iW0xMTEx1KnlGZ15sNyRGZ2FvJCIzY2BtbW1WaFtNRjM3JEZnYW8kIjN4IioqKioqKnAhUj5sRjM3JEZnYW8kIjNBZW1tbUsiZiQpKkYzNyRGZ2FvJCIzVyoqKioqKmYwQUU4Riw3JEZnYW8kIjNNKSoqKioqPmtUaDtGLDckRmdhbyQiM3UpKioqKipcY3QmKT5GLDckRmdhbyQiM2UpKioqKipmbyRlTSNGLDckRmdhbyQiMz9LTEw4UVNwRUYsNyRGZ2FvJCIzcCoqKioqKipmISlbLCRGLDckRmdhbyQiMyVmbW1tIlIkekskRiw3JEZnYW8kIjNzKioqKioqelE9cU9GLDckRmdhbyQiM21KTExCV0AjKlJGLDckRmdhbyQiMyFRYkdoYyNHZVZGLDckRmdhbyQiM3ltIlxYR2F1eSVGLDckRmdhbyQiMyhbaGUnKUdJeEwmRiw3JEZnYW8kIjNJcyF5Xm4lPS1nRiw3JEZnYW8kIjNbbEU3J0hIeChvRiw3JEZnYW8kIjNGQytzYSVmNC8pRiw3JEZnYW8kIjMsYWttTC1lPyYqRiw3JEZnYW8kIjNxLUBaM2pdMTdGYnA3JEZnYW8kIjN3bygpNEIiNGJlIkZicDckRmdhbyQiM0czISpvXWYoUlEjRmJwNyRGZ2FvJCIzVXZCVSYpelAtWUZicDckRmdhbyQiMi0rKyshKioqKioqKipGZGRwRl5hby1GZGhtNiZGZmhtRmpobUZnaG1GamhtLSUrQVhFU0xBQkVMU0c2JFEhNiJGal1xLSUlVklFV0c2JDskISM1RmlobSQiIzZGaWhtOyRGZ15sRmlobSQiIz9GaWht