Exercice 6 #On d\351fnit la param\351trisation restart; x:=t->t/(1+t^4);y:=t->(t^3)/(1+t^4); NiM+SSJ4RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiY5JCIiIiwmRi5GLiokRi0iIiVGLiEiIkYlRiVGJQ== NiM+SSJ5RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiY5JCIiJCwmIiIiRjAqJEYtIiIlRjAhIiJGJUYlRiU= Domaine d'Etude #R\351duisons l'intervalle d'\351tude \340 0..infinity , En effet[x(-t),y(-t)]=[-x(t),-y(t)]; NiMvNyQsJComSSJ0RzYiIiIiLCZGKUYpKiRGJyIiJUYpISIiRi0sJComRiciIiRGKkYtRi1GJA== evalb(%); NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ= #Donc la partie de courbe correspondant aux param\351tres n\351gatifs se d\351duira par sym\351trie / \340 O #R\351duisons l'intervalle d'\351tude \340 0..1 , En effet[x(1/t),y(1/t)]=[y(t),x(t)]; NiMvNyQqJkkidEc2IiEiIiwmIiIiRioqJEYmISIlRipGKComRiYhIiRGKUYoNyQqJkYmIiIkLCZGKkYqKiRGJiIiJUYqRigqJkYmRipGMkYo simplify(%); NiMvNyQqJkkidEc2IiIiJCwmIiIiRioqJEYmIiIlRiohIiIqJkYmRipGKUYtRiQ= evalb(%); NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ= Donc la partie de courbe correspondant aux param\351tres plus grand que 1 se d\351duira par sym\351trie / \340 la premi\350re bissectrice Calculons le vecteur vitesse Vt:=[D(x)(t),D(y)(t)]; NiM+SSNWdEc2IjckLCYqJCwmIiIiRioqJEkidEdGJSIiJUYqISIiRioqJkYsRi1GKSEiIyEiJSwmKiZGLCIiI0YpRi4iIiQqJkYsIiInRilGMEYx Vt:=simplify(Vt); NiM+SSNWdEc2IjckLCQqJiwmISIiIiIiKiRJInRHRiUiIiUiIiRGKywmRitGK0YsRishIiNGKiwkKihGLSIiIywmISIkRitGLEYrRitGMEYxRio= V:=unapply(Vt,t); NiM+SSJWRzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlNyQsJComLCYhIiIiIiIqJDkkIiIlIiIkRjEsJkYxRjFGMkYxISIjRjAsJCooRjMiIiMsJiEiJEYxRjJGMUYxRjZGN0YwRiVGJUYl NiM3JCIiISwkKiQiIiQjIiIiIiIjRig= Cette courbe est r\351guli\350re Tangente aux points A=M(0)=(0,0), B=M((1/3)^(1/4))=(0,0) et C=M(1)=(1/2,1/2) Ces tangentes sont dirig\351es par les vecteurs V(0);V((1/3)^(1/4));V(1); NiM3JCIiIiIiIQ== NiM3JCMhIiIiIiMjIiIiRiY= D'o\371 les \351quations param\351tr\351es des tangentes XTA:=x(0)+t*op(1,V(0));YTA:=y(0)+t*op(2,V(0)); NiM+SSRYVEFHNiJJInRHRiU= NiM+SSRZVEFHNiIiIiE= XTB:=x(1)+t*op(1,V((1/3)^(1/4)));YTB:=y(1)+t*op(2,V((1/3)^(1/4))); NiM+SSRYVEJHNiIjIiIiIiIj NiM+SSRZVEJHNiIsJiMiIiIiIiNGKComSSJ0R0YlRigiIiRGJ0Yn XTC:=x(1)+t*op(1,V(1));YTC:=y(1)+t*op(2,V(1)); NiM+SSRYVENHNiIsJiMiIiIiIiNGKEkidEdGJSMhIiJGKQ== NiM+SSRZVENHNiIsJiMiIiIiIiNGKEkidEdGJUYn EqTA:=[XTA,YTA,t=-infinity..infinity]:EqTB:=[XTB,YTB,t=-infinity..infinity]:EqTC:=[XTC,YTC,t=-infinity..infinity]: Etude des variations de x et y plot(x); LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdpbzckJCEjNSIiISQhM3UrKyoqKjQrISoqKiohI0A3JCQhMyFwbW1tInAwayYqISM8JCEzY0I9NihHTkg5IiEjPzckJCEzdUtMJDM8WFo9KkYzJCEzRThiWShbUi9IIkY2NyQkITNXbW1tVCVwImUoKUYzJCEzVSRSJlIvX0cpWyJGNjckJCEzL25tbSI0bShHJClGMyQhM2R2UiRlbyVbSTxGNjckJCEzT0xMJDNpLjkhekYzJCEzP1tiTWlrakU/RjY3JCQhM2ZtbTsvUj0wdkYzJCEzMUZxUVZucmtCRjY3JCQhM2srK11QOCNcNChGMyQhM205PWtmLiopKXojRjY3JCQhM0ttbTsvc2lxbUYzJCEzMShlc3FVIkhuTEY2NyQkITNRKioqKlwoeSRwWmlGMyQhMzFSNk44IVt5NCVGNjckJCEzaktMTCR5YUUiZUYzJCEzKXp4NEYiSFMoMyZGNjckJCEzPG1tbSI+cyVIYUYzJCEzIzMjZUkpUj4xQydGNjckJCEzXSoqKioqKlwkKjQpKlxGMyQhMzdOSngiWztqKnpGNjckJCEzbyoqKioqKlxfJlxjJUYzJCEzRz1XJVw3KHpbNSEjPjckJCEzJSkqKioqKipcMWFaVEYzJCEzV2YuclFAKm9SIkZdcDckJCEzSW1tOy8jKVtvUEYzJCEzc1p2cVtWSWY9Rl1wNyQkITMlSExMTD1leEokRjMkITNyKik9WyU9IXo6RkZdcDckJCEzbEtMTEwyJGYkSEYzJCEzU25wSVd6LSoqUUZdcDckJCEzJSkqKioqXFBZeCJcI0YzJCEzMydcIUghUWssSSdGXXA3JCQhM2dMTExMN2kpNCNGMyQhM29jMyw1TSkpRzUhIz03JCQhMzltbVROYSVIKT1GMyQhM3MiSHRkPUx2USJGXHI3JCQhM28pKioqXFAncHNtIkYzJCEzPmkkNFpLQy8iPkZccjckJCEzJSopKioqKlxGJio9WSJGMyQhMy0jKm9PIjRMZWkjRlxyNyQkITM/KioqKlw3NF9jN0YzJCEzK3IpKlwoejV2ZiRGXHI3JCQhM0dLJGU5aHgkXDZGMyQhM0liZCd5Inkjbz0lRlxyNyQkITNQbG1UNVZCVTVGMyQhM3FjYSM9dTg1eSVGXHI3JCQhM10lKSpcUDQ1NE4qRlxyJCEzb0A0NklpRSpIJkZccjckJCEzTTpMTCQzeCV6IylGXHIkITNwN0AvX1tsS2NGXHI3JCQhM0M7ZTkiZipcTCEpRlxyJCEzc3E+MHpxTnJjRlxyNyQkITM5PCRlKik0QXZ5KEZcciQhM19CKD1hIW9eJHAmRlxyNyQkITMxPTN4MVlhVHZGXHIkITNbNkdWKycpRylwJkZccjckJCEzJyo9TGU5cmMmSChGXHIkITNLOF16X10uJm8mRlxyNyQkITN6PyQzLTg3TyFvRlxyJCEzWytRcV1XMC5jRlxyNyQkITNnQUwkZTlkO0onRlxyJCEzMScqb2VyUz5aYUZccjckJCEzQkVMM3hydUZgRlxyJCEzKSl5aDdHaFxJXEZccjckJCEzKClITEwzcyRRTSVGXHIkITN5IVshbycqeVwlPiVGXHI3JCQhM2FrbVQmUWRERyRGXHIkITMhPjxaTiJHKVtDJEZccjckJCEzPioqKipcaXZGQEFGXHIkITM7TFJFd0gpZUAjRlxyNyQkITMnUUwkZVJ4KipmNkZcciQhMyVvLSdbWHh5ZjZGXHI3JCQhM11eb21tO3pyKSpGNiQhM0sqKVwiSGQienIpKkY2NyQkIjNeTUwzX05sLjVGXHIkIjNdNEVDQTxiLjVGXHI3JCQiM2FQTCQzLURnNSNGXHIkIjNbQ1dNSCwqPTUjRlxyNyQkIjNjU0xlKlsnUjNLRlxyJCIzIzM8KWUnKWZ2dUpGXHI3JCQiM2ZWTExlenc1VkZcciQiM2s+TSF5TnlvOyVGXHI3JCQiM1czK11pYlFxX0ZcciQiMylbMyZSOzgoRypbRlxyNyQkIjNKdG1tbUorSWlGXHIkIjMqeiZvTDErTzlhRlxyNyQkIjN1MCt2bz4iKTRuRlxyJCIzdyZmPmEwJSkqeWJGXHI3JCQiMz1RTCQzeD8nKj0oRlxyJCIzdz44RCIqPm10Y0ZccjckJCIzZ3FtIkhkSCVwd0ZcciQiMyczWVV4OUEhKXAmRlxyNyQkIjMtLisrdiRRI1wiKUZcciQiM2cjRzFtXFtebCZGXHI3JCQiM2lSTDN4O2wmPSpGXHIkIjM/bFxbI3pjY08mRlxyNyQkIjNpbm0ielwxQS0iRjMkIjNfJ2U5R0BrbSlbRlxyNyQkIjNHLF03R3klZTciRjMkIjNpdjdTaEE6PlZGXHI3JCQiMyVcTEwkZSIqW0g3RjMkIjMnZXltaWRoRXUkRlxyNyQkIjNjbm07SENqVjlGMyQiM1I9IzM2MUc8cSNGXHI3JCQiMz0rKysrZHhkO0YzJCIzNDNkKnlfLiRRPkZccjckJCIzUSsrXTdKRm49RjMkIjNfT3p4LCI0Iz45RlxyNyQkIjNlKysrRDB4dz9GMyQiM29rW1hUO1tmNUZccjckJCIzNSwrXWkmcEBbI0YzJCIzXSw5JVF5eDVQJ0ZdcDckJCIzKysrK3ZnSEtIRjMkIjM8MSFwYWgnRzhSRl1wNyQkIjNFbG1tbVp2T0xGMyQiM3UtNidmP2osbiNGXXA3JCQiMyU0Kysrdisnb1BGMyQiM1tdaDFxKVEiZj1GXXA3JCQiM1VLTCRlUjwqZlRGMyQiMztXJzRWPTtYUSJGXXA3JCQiM0stKytdKUh4ZSVGMyQiMy9tKilweT1JTDVGXXA3JCQiMyFmbW0iSCFvLSpcRjMkIjM1NT9hQzUlUi4pRjY3JCQiM1gsK103ay42YUYzJCIzSGkqZSEpUUNYSSdGNjckJCIzI2VtbW1UOUMjZUYzJCIzNSlHQyg9RSo9MSZGNjckJCIzMyoqKipcaSEqM2BpRjMkIjMvTygqUjwkZnMzJUY2NyQkIjM7TkxMTCp6eW0nRjMkIjNBRSZRZVlfOVAkRjY3JCQiMydlTEwkM04xIzQoRjMkIjM8Kio0QndNRi1HRjY3JCQiMyxwbTtIWXQ3dkYzJCIzdyE9IypcJ29mZEJGNjckJCIzNy0rKyt4RyoqeUYzJCIzQCkpPTQ+XEVHP0Y2NyQkIjNncG1tVDZLVSQpRjMkIjNSIT5gPk5sP3MiRjY3JCQiM3FOTExMYmRRKClGMyQiM3ciZi9vaDskKVwiRjY3JCQiM1srK11pYDFoIipGMyQiM0crMSpSPXEvSSJGNjckJCIzQS0rXVA/V2wmKkYzJCIzJz5lMzQkKlFDOSJGNjckJCIjNUYsJCIzdSsrKioqNCshKioqKkYvLSUmQ09MT1JHNiYlJFJHQkckRmdjbCEiIiRGLEZfZGxGYGRsLSUrQVhFU0xBQkVMU0c2JFEhNiJGZGRsLSUlVklFV0c2JDskISQrIkZfZGxGZmNsOyQhMTtqUjpbQEVmISM7JCIxb2ZxaSRbZiNmRl9lbA== plot(y); LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdgcDckJCEjNSIiISQhM2MrKyoqKjQrISoqKiohIz43JCQhMyFwbW1tInAwayYqISM8JCEzcTphYFprWFg1ISM9NyQkITN1S0wkMzxYWj0qRjMkITMtJnlFYCcpMycpMyJGNjckJCEzV21tbVQlcCJlKClGMyQhMzZwbEMkMyhmVDZGNjckJCEzL25tbSI0bShHJClGMyQhMztOdEchZTMvPyJGNjckJCEzT0xMJDNpLjkhekYzJCEzW21cWzJMRmw3RjY3JCQhM2ZtbTsvUj0wdkYzJCEzLE0icExkIyo+TCJGNjckJCEzaysrXVA4I1w0KEYzJCEzeTR1QndHISozOUY2NyQkITNLbW07L3NpcW1GMyQhM20hUnNwbV8kKVwiRjY3JCQhM1EqKioqXCh5JHBaaUYzJCEzT2NeaSV5UyYqZiJGNjckJCEzaktMTCR5YUUiZUYzJCEzXmJyJVtjeSk9PEY2NyQkITM8bW1tIj5zJUhhRjMkITNSISpmOSVwI29SPUY2NyQkITNdKioqKioqXCQqNCkqXEYzJCEzK1ZkVCplZnYqPkY2NyQkITNvKioqKioqXF8mXGMlRjMkITMjejJ2ajJwYj0jRjY3JCQhMyUpKioqKioqXDFhWlRGMyQhMywnKVwvNXAlSFMjRjY3JCQhM0ltbTsvIylbb1BGMyQhM3EoeVZGcCJcU0VGNjckJCEzJUhMTEw9ZXhKJEYzJCEzI1FVdFRJNiUqKUhGNjckJCEzbEtMTEwyJGYkSEYzJCEzM3EuJ1EkNCUzTyRGNjckJCEzJSkqKioqXFBZeCJcI0YzJCEzO2piXyV6TTwiUkY2NyQkITNnTExMTDdpKTQjRjMkITMnPUxDYXI+OWAlRjY3JCQhM28pKioqXFAncHNtIkYzJCEzIkctVHFwdTBKJkY2NyQkITMjKSkqKlxpWCNlazpGMyQhMyN6VisiR3lTeGFGNjckJCEzJSopKioqKlxGJio9WSJGMyQhM2JeJyk0VnJ3NmNGNjckJCEzKyoqXFAlb14wVCJGMyQhMyVHUVBGXlIoZmNGNjckJCEzMSoqKlxQNDMjZjhGMyQhMyskKT5nKWZ3K3AmRjY3JCQhMzgqKlw3LlgneUkiRjMkITNtPFRIYDpWKXAmRjY3JCQhMz8qKioqXDc0X2M3RjMkITN1eXFNRzciKnpjRjY3JCQhM0dLJGU5aHgkXDZGMyQhM00qKTRiJCp6M0piRjY3JCQhM1BsbVQ1VkJVNUYzJCEzPylbeShcdVEkPiZGNjckJCEzXSUpKlxQNDU0TipGNiQhM2w0IltIJEhsTFlGNjckJCEzTTpMTCQzeCV6IylGNiQhM3lYdnQqSHE2J1FGNjckJCEzJyo9TGU5cmMmSChGNiQhM21NKWZbJHAoZS0kRjY3JCQhM2dBTCRlOWQ7SidGNiQhMyllNFspcCYqKipwQEY2NyQkITNCRUwzeHJ1RmBGNiQhM0s5MmUsZl4qUiJGNjckJCEzKClITEwzcyRRTSVGNiQhM0RiQz1OX2M5ekYvNyQkITNha21UJlFkREckRjYkITM3MiRRIzQxVSdcJEYvNyQkITM+KioqKlxpdkZAQUY2JCEzdTJYO2dJTCQ0IkYvNyQkITNfbTsvXndqIXAiRjYkITMwYiUqSCMzSSRHWyEjPzckJCEzJ1FMJGVSeCoqZjZGNiQhMyUpKm82IzNWZ2c6RmV3NyQkITMlPSxdN0d5TkgnRi8kITMtW0IiPk0jeiNcIyEjQDckJCEzXV5vbW07enIpKkZldyQhM1UpSHJ2LyZHPycqISNDNyQkIjMpKkhMM3gieVlfJUYvJCIzJylRT1ZxWj9qIyohI0E3JCQiM15NTDNfTmwuNUY2JCIzOmprMXYiKSozLCJGZXc3JCQiM0VOM0Y+a0N6N0Y2JCIzdVFzSCdwKilHNCNGZXc3JCQiMy1PJGVrR1JbYiJGNiQiM1cpKSo9K2hubXYkRmV3NyQkIjN5T2VrYEBWST1GNiQiMzNTLCRbIkgmZjcnRmV3NyQkIjNhUEwkMy1EZzUjRjYkIjMnUlYrWEcrRUsqRmV3NyQkIjNjU0xlKlsnUjNLRjYkIjNFIXkhPm9HLm9LRi83JCQiM2ZWTExlenc1VkY2JCIzPDB3WVVOPlZ4Ri83JCQiM1czK11pYlFxX0Y2JCIzVzxnLC42NGY4RjY3JCQiM0p0bW1tSitJaUY2JCIzZFhnQXJBWixARjY3JCQiMz1RTCQzeD8nKj0oRjYkIjM9I3lNQGVfRiRIRjY3JCQiMy0uKyt2JFEjXCIpRjYkIjNRaSFmXykqKWViUEY2NyQkIjNpUkwzeDtsJj0qRjYkIjNWMilHNzhQdF8lRjY3JCQiM2lubSJ6XDFBLSJGMyQiM294TXhqYDUxXkY2NyQkIjNHLF03R3klZTciRjMkIjM1YlZyZCVwWVomRjY3JCQiMyVcTEwkZSIqW0g3RjMkIjNnZzstJFFxdmwmRjY3JCQiMzVvOy93XC0kRyJGMyQiM2shSDQzRltKcCZGNjckJCIzRCwrdiR6Z2xMIkYzJCIzYzw5TSRcXG5wJkY2NyQkIjNTTSRlOWgnNCFSIkYzJCIzRzshKnplKm9UbiZGNjckJCIzY25tO0hDalY5RjMkIjMvMSE0RiFHZ0ljRjY3JCQiMylRTCRla1NxXTpGMyQiMyNSMGw9NCx6XCZGNjckJCIzPSsrKytkeGQ7RjMkIjN2JUcueC8mKW9LJkY2NyQkIjNRKytdN0pGbj1GMyQiMzM7Tix0Km8kW1xGNjckJCIzZSsrK0QweHc/RjMkIjNZNTlYJXA9JnBYRjY3JCQiMzUsK11pJnBAWyNGMyQiM2Z2dSZcaEVgI1JGNjckJCIzKysrK3ZnSEtIRjMkIjMjZmtHbCJbeWtMRjY3JCQiM0VsbW1tWnZPTEYzJCIzJTNScWZsVEgoSEY2NyQkIjMlNCsrK3YrJ29QRjMkIjNQOCEqKUhSOS9rI0Y2NyQkIjNVS0wkZVI8KmZURjMkIjNRPzhvdkoqZVIjRjY3JCQiM0stKytdKUh4ZSVGMyQiM3FeTyVbJ3kiWzwjRjY3JCQiMyFmbW0iSCFvLSpcRjMkIjNQPyM0c0R1MSsjRjY3JCQiM1gsK103ay42YUYzJCIzdWUvWGU6I2YlPUY2NyQkIjMjZW1tbVQ5QyNlRjMkIjMjMzVaXlIyZ3IiRjY3JCQiMzMqKioqXGkhKjNgaUYzJCIzI0h2OGVHayIpZiJGNjckJCIzO05MTEwqenltJ0YzJCIzQTwiKSpRd28qKVwiRjY3JCQiMydlTEwkM04xIzQoRjMkIjNNQSMzS3JwJTQ5RjY3JCQiMyxwbTtIWXQ3dkYzJCIzZGA4O0dibEk4RjY3JCQiMzctKysreEcqKnlGMyQiM1cnKWZZeT1obDdGNjckJCIzZ3BtbVQ2S1UkKUYzJCIzKXpRPG1xZiUpPiJGNjckJCIzcU5MTExiZFEoKUYzJCIzb0l3UGVdOlc2RjY3JCQiM1srK11pYDFoIipGMyQiMzUsJ2ZSOUA5NCJGNjckJCIzQS0rXVA/V2wmKkYzJCIzS1I3KUc4MGAvIkY2NyQkIiM1RiwkIjNjKysqKio0KyEqKioqRi8tJSZDT0xPUkc2JiUkUkdCRyRGXGZsISIiJEYsRmRmbEZlZmwtJStBWEVTTEFCRUxTRzYkUSE2IkZpZmwtJSVWSUVXRzYkOyQhJCsiRmRmbEZbZmw7JCExR29BdV5MRWYhIzskIjA4dVU2YFkjZiEjOg== varx:=D(x)(t)/abs(D(x)(t)): vary:=D(y)(t)/abs(D(y)(t))/2: On trace en rouge le signe x' et en vert le signe de y' plot([varx,vary],t=0..1,discont=true,thickness=[3,3]); LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JjdTNyQkIiIhRiskIiIiRis3JCQiMy1MaXdhYkFjOyEjPkYsNyQkIjMrOSV5VGIpSCg0JEYxRiw3JCQiM0FtdThmZSR6ciVGMUYsNyQkIjNjdnk5K2VKXGpGMUYsNyQkIjM1TiVwcTJVSCh6RjFGLDckJCIzIyplZ1N1OUR5JSpGMUYsNyQkIjM6K0RXOzdwLjYhIz1GLDckJCIzN3ZIKHo3KSlbRSJGREYsNyQkIjNtM1EnKnkhb2JVIkZERiw3JCQiM3UqUU0nZXIlM2YiRkRGLDckJCIzLjs6KD4xRGt0IkZERiw3JCQiM0YjXCc0LDhKKz5GREYsNyQkIjNdIj1sR1pxWzEjRkRGLDckJCIzY1h0JHBzYE1BI0ZERiw3JCQiMzc/QD05RFluQkZERiw3JCQiM2dyVS8iKkdxUURGREYsNyQkIjMhZnMkKT0mZnckbyNGREYsNyQkIjMpKXlnTXgoM0QmR0ZERiw3JCQiMzkhcF4teHU9KyRGREYsNyQkIjNPOWJxUEh2bEpGREYsNyQkIjM0LkIkcHEuPUskRkRGLDckJCIzX2QoPlFKRVlbJEZERiw3JCQiM2pdJGZZSFtUaiRGREYsNyQkIjNXS0dyXXpVJnokRkRGLDckJCIzOUczYCc9X0gnUkZERiw3JCQiM3EvInlpXyN5M1RGREYsNyQkIjNfcXlOKUckR21VRkRGLDckJCIzZEZwLygpcCoqR1dGREYsNyQkIjMlXC8ieidmIT0pZSVGREYsNyQkIjNlIz4oR0MqKT5VWkZERiw3JCQiM2Elb2x2LDVLIlxGREYsNyQkIjMhNDAtNDRybzEmRkRGLDckJCIzLTYhKSlcM1A0QiZGREYsNyQkIjMpXERKMUUwJ3pgRkRGLDckJCIzOHEuLVgpUUBhJkZERiw3JCQiMzkxQFIiR3FdcCZGREYsNyQkIjNrdDRmKHBGXCZlRkRGLDckJCIzVTMzP1R2QDZnRkRGLDckJCIzV2M5RkImUVs8J0ZERiw3JCQiM2QoXD9lKFxVS2pGREYsNyQkIjMlPWJuVSkpek5cJ0ZERiw3JCQiMyFvSTIoWy5TYG1GREYsNyQkIjN0MmhAZChlLSFvRkRGLDckJCIzcyM0SWoxdiZvcEZERiw3JCQiMyF5I1xyeiI+Ij5yRkRGLDckJCIzRysrIVJnSSd6c0ZERiw3JCQiM2xhOGs8MEVMdUZERiw3JCQiMz0rKytUb04pZihGREYsN1M3JCQiM3cqKioqKmYob04pZihGRCQhIiJGKzckJCIzI0c5RjknZXFdd0ZERl51NyQkIjM5J3pRUFZhaXAoRkRGXnU3JCQiM1E7KHpxY3l1dShGREZedTckJCIzOz5zQVpBLyp6KEZERl51NyQkIjM1WVE/YTNPXXlGREZedTckJCIzJz04NUB4UnoqeUZERl51NyQkIjNjNk9zJilcP1p6RkRGXnU3JCQiMysqRzwsOWIiKSp6RkRGXnU3JCQiM21hJz5uKj0lKlshKUZERl51NyQkIjNnKjNyJD1CPSwiKUZERl51NyQkIjNHRW4+NWQ+WiIpRkRGXnU3JCQiM1kiPV02KmUqKik+KUZERl51NyQkIjM1IVxCJ28oMzVEKUZERl51NyQkIjNtXTMjUSJHOCwkKUZERl51NyQkIjNLKyVIKVstbFkkKUZERl51NyQkIjMmKVFeZiIpW3grJSlGREZedTckJCIzMydbKDNYYmlZJSlGREZedTckJCIzL0VYd20yJyoqXClGREZedTckJCIzUUhVRHY5PFomKUZERl51NyQkIjNXMkEnXDVwKilmKUZERl51NyQkIjNjM21eKHAjSFsnKUZERl51NyQkIjNvJVtpPnBjKCpwKUZERl51NyQkIjMrYVQ9L24sWigpRkRGXnU3JCQiMzs0Nig+LCQqenopRkRGXnU3JCQiMyFSWEoicEklNCYpKUZERl51NyQkIjN3eGRhXGkuKCopKUZERl51NyQkIjNbKj1kcjk9byUqKUZERl51NyQkIjMjUSc+Yj14QykqKilGREZedTckJCIzPTFZZD86Y1shKkZERl51NyQkIjM7NSE+NnJVczQqRkRGXnU3JCQiM2Mnei1MKFtIXiIqRkRGXnU3JCQiMytoPjRYSicpKj4qRkRGXnU3JCQiMy9QcCI+OT88RCpGREZedTckJCIzLWJiXSlHNSgpSCpGREZedTckJCIzUy02WElIM10kKkZERl51NyQkIjMpeURlSGU/JSlSKkZERl51NyQkIjMxNygqb2R0JSpbJSpGREZedTckJCIzKSkpSFZhXlkkKVwqRkRGXnU3JCQiMzFQY2BiRzFdJipGREZedTckJCIzUXl0blA9KCkqZipGREZedTckJCIzJUgrKSlmcjMzbCpGREZedTckJCIzVlQoRzciUUssKCpGREZedTckJCIzR1IsWVA+dVooKkZERl51NyQkIjM2elRTW0IlNCEpKkZERl51NyQkIjN3SiNmLFZEJlspKkZERl51NyQkIjNtTSI9KT4qZSMqKikqRkRGXnU3JCQiM3k/InBHTTx5JSoqRkRGXnU3JEYsRl51LSUmQ09MT1JHNiYlJFJHQkckIiM1Rl91JEYrRl91RmRebC0lKlRISUNLTkVTU0c2IyIiJC1GJjYlN2ZuNyQkIjNgKioqKipcbjU7Im8hI0AkIjMrKysrKysrK11GRDckJCIzIyoqKioqKlw4QUJPIiEjP0ZgX2w3JCQiMzMrKystS1tWP0ZlX2xGYF9sNyQkIjMjKSoqKioqKnBVa0NGRmVfbEZgX2w3JCQiM3MqKioqKlxTbXAzJUZlX2xGYF9sNyQkIjNrKioqKioqUiYpR1xhRmVfbEZgX2w3JCQiM1kqKioqKio0RyRSPClGZV9sRmBfbDckJCIzJSoqKioqKnpxZCkqMyJGMUZgX2w3JCQiMyopKioqKio+Yyd5TTtGMUZgX2w3JCQiMycpKioqKipmVDooekBGMUZgX2w3JCQiMyMqKioqKioqeloqejckRjFGYF9sNyQkIjMzKysrWFRGd1NGMUZgX2w3JCQiMyYqKioqKio0el8iNGlGMUZgX2w3JCQiM28qKioqKipSJnBoTilGMUZgX2w3JCQiMysrKysqPSlIXDVGREZgX2w3JCQiMyUqKioqKip6LzN1QyJGREZgX2w3JCQiMzUrKytKJFJEWCJGREZgX2w3JCQiMzcrKyspUidvaztGREZgX2w3JCQiMy0rKysxSjp3PUZERmBfbDckJCIzMysrKzNFbiQ0I0ZERmBfbDckJCIzLSsrKy9SRSZHI0ZERmBfbDckJCIzIikqKioqKlxLXTRdI0ZERmBfbDckJCIzJCoqKioqKlxQQXZyI0ZERmBfbDckJCIzKSoqKioqKlxuSGkjSEZERmBfbDckJCIzKikqKioqKnAqZXY6SkZERmBfbDckJCIzJCkqKioqKnohNDdUTEZERmBfbDckJCIzPysrK0xZLktORkRGYF9sNyQkIjN1KioqKio0bzdUdiRGREZgX2w3JCQiMzErKyskUSpvXVJGREZgX2w3JCQiMz8rKysiPWxqOyVGREZgX2w3JCQiMysrKytWJlI8UCVGREZgX2w3JCQiMy8rKytYaC0nZSVGREZgX2w3JCQiMyEqKioqKioqUSIzR3klRkRGYF9sNyQkIjMhKSoqKioqSDVrXSpcRkRGYF9sNyQkIjNBKysrKFJRYkAmRkRGYF9sNyQkIjNgKysrPT5ZMmFGREZgX2w3JCQiM1wrKyt5WHU5Y0ZERmBfbDckJCIzZCoqKioqKlt5KSlHZUZERmBfbDckJCIzLisrK2lfUVFnRkRGYF9sNyQkIjNBKysrIXklM1RpRkRGYF9sNyQkIjM1KysrTyFbaFknRkRGYF9sNyQkIjNJKysrI1F4JG9tRkRGYF9sNyQkIjNzKioqKipSUCtWKW9GREZgX2w3JCQiM1kqKioqKnBwZSp6cUZERmBfbDckJCIzdSoqKioqUiNcJ1FIKEZERmBfbDckJCIzIyoqKioqKkgsTV5cKEZERmBfbDckJCIzUysrKzAjPWJxKEZERmBfbDckJCIzWSoqKioqcD8yNyJ6RkRGYF9sNyQkIjNhKysrSVhhRSIpRkRGYF9sNyQkIjM3KysrbCpSUkwpRkRGYF9sNyQkIjNpKioqKipIdkpnYSlGREZgX2w3JCQiM3MqKioqKkhKbmp2KUZERmBfbDckJCIzayoqKioqKltRa1wqKUZERmBfbDckJCIzdyoqKioqKm8wO3IiKkZERmBfbDckJCIzWyoqKioqXHcoR3AkKkZERmBfbDckJCIzNysrKyFvSzBlKkZERmBfbDckJCIzMysrKzw1cyN5KkZERmBfbDckRixGYF9sLUZfXmw2JkZhXmxGZF5sRmJebEZkXmxGZV5sLSUrQVhFU0xBQkVMU0c2J1EidDYiUSFGYmpsLSUlRk9OVEc2JCUqSEVMVkVUSUNBR0ZjXmwlK0hPUklaT05UQUxHRmhqbC0lJVZJRVdHNiQ7RmRebEZiXmw7JCEkLyIhIiMkIiQvIkZgW20= support de la courbe total:=[x(t),y(t),t=-infinity..infinity]: partiel:=[x(t),y(t),t=0..1]: plot([total,partiel,EqTA,EqTB,EqTC],-0.6..0.6,-0.6..0.6,color=[blue,red,black,black,black],thickness=[1,2,2,2,2]); LSUlUExPVEc2KS0lJ0NVUlZFU0c2JTdccTckJCEzRSUpb0IwSFhnSiEjRiQhMzYiUikqKioqKjQ7Im8hI0A3JCQhM25eOz1DQk9HRCEjRSQhM1tNYCoqKio+S2k4ISM/NyQkITNjP0wqUiVHQUwmKUYzJCEzQHpWJyoqKkhbVj9GNjckJCEzTWVyLDsvcEE/ISNEJCEzKTMnKVwpXFVrQ0ZGNjckJCEzd3ZIISp5MmVFb0Y/JCEzJ3B1ZikpXG1wMyVGNjckJCEzTy9nWkpCOj07ISNDJCEzJSk+XD4mXClHXGFGNjckJCEzKzEibyIqNGs3WSZGSiQhM29nOl44RiRSPClGNjckJCEzRTcnZSFbPV8lSCIhI0IkITNrLlFpJW9kKSozIiEjPjckJCEzKUhaJnknKTQscFZGVSQhM0cqKnBCTGt5TTtGWDckJCEzJmUkR20hRzxjLiIhI0EkITNTTDwnSCNccnpARlg3JCQhM0VATkNbcWBnSUZbbyQhM3RISVkheSIqejckRlg3JCQhMyVbYV1YJ0c3dG5GW28kITM7Zjt4ISpHRXdTRlg3JCQhM1NqJEhlKzpRUiNGLyQhMy9xYicpKlxnITRpRlg3JCQhM1JvYUolXGVXJGVGLyQhMz8yT2hYQHdiJClGWDckJCEzO2YwKW9GbF46IkY2JCEzcUEpPkYrciJcNSEjPTckJCEzPmVzJWViSTAlPkY2JCEzTXN1Qic0MXJDIkZncDckJCEzP2FCSl9pSWpJRjYkITNFXndhOEkqPVgiRmdwNyQkITNaKSkpKnpvcWc0WUY2JCEzT1N5YCMqKjNNbSJGZ3A3JCQhMzN2IlxOIVF6JmYnRjYkITNNaFR1PjkkUSg9RmdwNyQkITNtTjlcdCpSKmYiKkY2JCEzcT4sKTNRZCcqMyNGZ3A3JCQhM3VHL3llckAhPiJGWCQhM0MzJnl0MlshekFGZ3A3JCQhM2UrYTgjRyg9ZTpGWCQhM3cvY3MyWT8iXCNGZ3A3JCQhM2U+UyVRanE7LyNGWCQhM01ocHRyUiVIcyNGZ3A3JCQhMzVtISlvZ1I3OkZGWCQhMzdHJGYjSEE8KilIRmdwNyQkITM5JFFQP2U1ZWckRlgkITM/NC9TJ2UydEYkRmdwNyQkITMjcDpWUVJCQ0MmRlgkITMjUWhjJEcqKT0kcCRGZ3A3JCQhMyVbNV51JD5Ec3VGWCQhM1R5LXlcTDlBVEZncDckJCEzKXArTCwqSEIoPSJGZ3AkITNZRE9mO1N0PFpGZ3A3JCQhM0EzXUcvNHUlWyJGZ3AkITM9K0slM19xZCsmRmdwNyQkITMvVCxJI0gtcCg9RmdwJCEzd3ZnW3hfVCFIJkZncDckJCEzNVBQUF1cIilcQ0ZncCQhMzcsbW9aIykqKWViRmdwNyQkITNuWi5IJSpbUS1LRmdwJCEzRVloTyJ6W3NwJkZncDckJCEzaE1ZU3RoTUJPRmdwJCEzXWF4RnEkemxuJkZncDckJCEzIyllZS0oSFtRMiVGZ3AkITMncFlAIyo0ITNzYkZncDckJCEzbGltO21KXE1YRmdwJCEzYT5FOWwpSDlPJkZncDckJCEzbzU+ZS9DeXRcRmdwJCEzWkpkQD06ImUtJkZncDckJCEzKT4hKVs5KnosaWBGZ3AkITNjJSpbMjQ0XUxYRmdwNyQkITNzRV4tRGU5QGNGZ3AkITNILD50YyFIeSFSRmdwNyQkITNPJj0qKj4mKjNucCZGZ3AkITNhdEt4ZT4mej0kRmdwNyQkITN5VyhwSUgpW2FiRmdwJCEzWlcoKnonKWUmb1YjRmdwNyQkITNYXyE9W0FDJ0hfRmdwJCEzRW8taj0jSDl5IkZncDckJCEzTVReIT1YUDZ1JUZncCQhM11sPDU5ZHkzN0ZncDckJCEzMj4qelJFS2c3JUZncCQhM3cjPUcuPSdbJlwoRlg3JCQhM19dW04oUj9eVSRGZ3AkITMuKClbSDdJQE9URlg3JCQhMzMpKVxIdmtoOEVGZ3AkITNrXS0pPl8hUS09Rlg3JCQhM2E7M3gyPUR2PEZncCQhMyMqPSJldj4uZmcmRjY3JCQhMz9cOiJRbiRIeiMqRlgkITMrYD0mXCp6OSIqekYvNyQkITMpKipSeiNwRlYoKnlGNiQhMz4lemlTKFxlRFxGSjckJCIzOW5EJ3olWyopRyEpRlgkIjMrTkw9ZiozaDwmRi83JCQiM0kjNHRBYWpNbyJGZ3AkIjN1eWRlWDNyeVpGNjckJCIzXT88KEdCRGNiI0ZncCQiMzUzMmFIYWwkbyJGWDckJCIzT109ZyN6OzBTJEZncCQiM3JyJW9ObDlVLyVGWDckJCIzKT1sPiFwQDkoMyVGZ3AkIjMjeSl5YmF4ImVFKEZYNyQkIjNBd0U2OElNJXAlRmdwJCIzWzo9KSk+ISkzbTZGZ3A3JCQiM0lWKjQpNF1KJT0mRmdwJCIzbVYmPShIZTI6PEZncDckJCIzRjxabiUqXCk9XyZGZ3AkIjNbIlEkKltxT3BNI0ZncDckJCIzVT1CQEZdVipvJkZncCQiMzdoYiJmXVFCMiRGZ3A3JCQiM2koUWFoYj8xbCZGZ3AkIjNPaVslPWImenlQRmdwNyQkIjMlKSpSUVpOYj9WJkZncCQiMzJLJ3p6PipmMVdGZ3A3JCQiM1UtJ1tmTUkxMyZGZ3AkIjNDPzgsJVtsXyJcRmdwNyQkIjM5NUIocCpSY01ZRmdwJCIzLUBaQ0xIbSlIJkZncDckJCIzRXFaWislb2Q6JUZncCQiMzc1bzFjZypIYSZGZ3A3JCQiM2FXUiEzT0FHbyRGZ3AkIjNPP3cnZUJgeW0mRmdwNyQkIjNDc2N0U3l1UktGZ3AkIjNBX1wiPi9tIylwJkZncDckJCIzdy1zN1lqPylcI0ZncCQiM10rITQucEpaZCZGZ3A3JCQiM0NEKXljKnpiRj5GZ3AkIjNzdycpKlsyWjFLJkZncDckJCIzUEdHalptRjc6RmdwJCIzNllaYGwlcCpHXUZncDckJCIzM0hUdTlpJioqPiJGZ3AkIjNHUWkjW2ktO3QlRmdwNyQkIjNHXE8mcFkoKSkpXChGWCQiMyFlTlBIcyttNyVGZ3A3JCQiM1drLksoKVJwYl5GWCQiM3loTF0iXCxRbiRGZ3A3JCQiMz52eGIqbyNcME9GWCQiM2ciKilcWFI5c0YkRmdwNyQkIjMnZllTIXlDQSJwI0ZYJCIzJ3lbb2BwbjApSEZncDckJCIzL1wkR28lcGo2P0ZYJCIzTGgpcDA/RCg0RkZncDckJCIzU3UncDZIJ1xsOkZYJCIzT29hKEcjSDAmXCNGZ3A3JCQiMzhkPSRRIVtpLzdGWCQiMyUpSEUqNCgpUiIpRyNGZ3A3JCQiMz9xYU9MRj8nNCpGNiQiM11Wd1VtUyNbMyNGZ3A3JCQiMyEqM2EhWyUqSHVjJ0Y2JCIzdU4wPjUvOnI9RmdwNyQkIjMtPyUpSCZ6OjVpJUY2JCIzZ0ElXFBOeFptIkZncDckJCIzVUglSFY/XUIyJEY2JCIzMS0lKSpHdT1MWCJGZ3A3JCQiMyVcSEBkK3FIIz5GNiQiMypvSXpURk5MQyJGZ3A3JCQiM1FIYFRRQm1lNkY2JCIzKSkpUi8zS0ctMCJGZ3A3JCQiMyVvXnAnPiRcT3AmRi8kIjMhW0tSMTsuISlHKUZYNyQkIjMqPixvOFo/KjNERi8kIjM5Y1ltWEQtMmpGWDckJCIzISo+VWNoTWkhUShGW28kIjMjKmVSZTgtbSU+JUZYNyQkIjNqNnRUKlx0cUEkRltvJCIzYyk0IioqRyNHUD0kRlg3JCQiM205Wy4yc3hENUZbbyQiM2EiKipHZEoqeXNARlg3JCQiM2MtRF5eIylcRlZGVSQiM0QqPiEzTkFmSDtGWDckJCIzV1FOcnc8QSNHIkZVJCIzJ2ZfbVspW1InMyJGWDckJCIzRGMyLXNKUDRhRkokIjNBW3YzOTwnejkpRjY3JCQiMykqekojPUN4RmciRkokIjMqNHlxX1x1PlYmRjY3JCQiM2d4YE86cnJobkY/JCIzY1N4KCkpKjQpUjIlRjY3JCQiM0tIVSJSYnJNKyNGPyQiMyV6P18pXHMpZnIjRjY3JCQiM0NDJipRJ1JZQFgpRjMkIjNvSlwnKipcISpwLiNGNjckJCIzSFNiJzR2UVZdI0YzJCIzO3BgKioqXCQqek4iRjY3JCQiM00xcHJRTVVJSkYsJCIzMSVcKSoqKlxuKip5J0YvNyRJKnVuZGVmaW5lZEdJKnByb3RlY3RlZEdGamlsRmlpbC0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIkZfamwkIiM1RmFqbC0lKlRISUNLTkVTU0c2IyIiIi1GJjYlN1M3JCRGYGpsRmBqbEZcW203JCQiMzcpUkdZI1xyekBGWCQiMzc5JVFJRzxjLiJGW283JCQiM0MlKVxnIipHRXdTRlgkIjNPTlhxb0c3dG5GW283JCQiM004QGAsMDE0aUZYJCIzbXZwdjJdIlFSI0YvNyQkIjNBail6czlpZE4pRlgkIjNWVWoheVxlVyRlRi83JCQiM18wSiFHK3IiXDVGZ3AkIjNPUWQ6eF87YjZGNjckJCIzL1NVOic0MXJDIkZncCQiMzRyJWVhYkkwJT5GNjckJCIzPTIjKUg4SSo9WCJGZ3AkIjM/I2ZKMkQxTDEkRjY3JCQiM3dFW1gjKiozTW0iRmdwJCIzR0skMyJvcWc0WUY2NyQkIjN1MWRcPjkkUSg9RmdwJCIzQUlvIjQhUXomZidGNjckJCIzJypbXXIhUWQnKjMjRmdwJCIzWysmNDgoKlIqZiIqRjY3JCQiMyN6cFxxMlshekFGZ3AkIjNzJVxoI2VyQCE+IkZYNyQkIjNFPjJPYFU/IlwjRmdwJCIzKSlHbDw1bT1lOkZYNyQkIjNtP0h5b0B5LUZGZ3AkIjMhPTsvTTgmKWYqPkZYNyQkIjMoNEMzJXksJFwhSEZncCQiM0UjNEhfWFJ1WyNGWDckJCIzV2U8M0NmbSczJEZncCQiMysiKTR6ZV5eJypIRlg3JCQiM28zVHNHIikqKipIJEZncCQiMy8lekpnRDxRbyRGWDckJCIzUUd4bGFyIXpaJEZncCQiM0k8P3k0RXlRVkZYNyQkIjMlXCMqR21oKio0byRGZ3AkIjN5TihmMC1teD0mRlg3JCQiMzMsaTIwaXRjUUZncCQiM3diTEh2S2Q+Z0ZYNyQkIjNTXk0wVGdcV1NGZ3AkIjMqcDssP1V5MS0oRlg3JCQiMy0pXEchbyN6d0AlRmdwJCIzO2h3cSRmdDMxKUZYNyQkIjN3RD4wP2B3IlIlRmdwJCIzM2AjXHYoM2dPIypGWDckJCIzOyJlbCoqcHpcYSVGZ3AkIjMlNGMkKXBqdidSNUZncDckJCIzTlpPREt1Sy1aRmdwJCIzYVZtJlEpPkV0NkZncDckJCIzJ3BpciJwITNpJltGZ3AkIjNJSCZHcCl6KDRLIkZncDckJCIzIzMvJ2U5S2AiKVxGZ3AkIjM3ZzUzOENqYzlGZ3A3JCQiM0ZfX0gsJnByNSZGZ3AkIjNkRCY0P1NgK2giRmdwNyQkIjM2NFY4M29sRF9GZ3AkIjMvKClwaCZvbGF4IkZncDckJCIzOFw4QjxxekhgRmdwJCIzWGdWJmV0YkwlPkZncDckJCIzdixiZE0mSCo9YUZncCQiM3UleSZwKXlNMjYjRmdwNyQkIjNKQ11eIilSJ1JdJkZncCQiM2tvNllkaUUsQkZncDckJCIzT0EncDYnZVxuYkZncCQiM0c8OScqKW83ZFojRmdwNyQkIjNnJ3kpR3BFZ0BjRmdwJCIzeUomXE1UelVtI0ZncDckJCIzOzZoK0hZRWVjRmdwJCIzZlRzVnA3RE9HRmdwNyQkIjMhRyY0S1gleltvJkZncCQiMyQpb1RgSUJRQ0lGZ3A3JCQiM3VlZilwQiQ9KHAmRmdwJCIzLW40PmUmMzA/JEZncDckJCIzVVglSF50dnFwJkZncCQiMzNrcGFNJFJFUSRGZ3A3JCQiM0U+NHAlRypcJW8mRmdwJCIzMyc+KVwyKm94YiRGZ3A3JCQiMyMzTCxydzUnZWNGZ3AkIjNGbCVbSmooKXB0JEZncDckJCIzaCczJWVPJVs+aSZGZ3AkIjMqKUh6aypHKnAvUkZncDckJCIzL3lUXFlWQnRiRmdwJCIzT0dBI2ZvI1JxU0ZncDckJCIzXipRbih6IW9XXiZGZ3AkIjMocCxsNV9oIkdVRmdwNyQkIjNPelJXUFIpPlgmRmdwJCIzI1xKJ3pyeSNvTyVGZ3A3JCQiM1NrbHctVURyYEZncCQiM1s3QDM3Png8WEZncDckJCIzP0JNKSlRTWciSCZGZ3AkIjNTJilcekF2OlhZRmdwNyQkIjNxOlgmbzgzKSo+JkZncCQiMzskb241VkZGeCVGZ3A3JCQiMyQqW1pfS043MV5GZ3AkIjNrMXdgeE1rJylbRmdwNyQkIjMrKysrKysrK11GZ3BGaWltLUZcamw2JkZeamxGYmpsRl9qbEZfamwtRmVqbDYjIiIjLUYmNiU3UzckJCEyLSsrKyEqKioqKioqKiIkIkhGXFttNyQkITNHWilIPCdbdihlJSEjO0ZcW203JCQhMytWQjxzMUFgQ0Zqam1GXFttNyQkITNYaUpYd2NfNTtGamptRlxbbTckJCEzM00/d3Mwcyc+IkZqam1GXFttNyQkITN0TFh1MyV6LGAqISM8RlxbbTckJCEzcW8tMmlIaTshKUZnW25GXFttNyQkITNHXywnSDsmXCUpb0ZnW25GXFttNyQkITNkbCFSeldQcisnRmdbbkZcW203JCQhMyVISmhEU2IrTCZGZ1tuRlxbbTckJCEzSydcIjRdZkh3WkZnW25GXFttNyQkITNRP2hLR0EnZVAlRmdbbkZcW203JCQhM0krKyshW3olKSpSRmdbbkZcW203JCQhMzUrKysrVSc+bCRGZ1tuRlxbbTckJCEzLysrKz9ELj1MRmdbbkZcW203JCQhM1NMTExqMHo5SUZnW25GXFttNyQkITMhcG1tbWExVWwjRmdbbkZcW203JCQhMz1ubW0nZVcoW0JGZ1tuRlxbbTckJCEzUysrKzUoPk0qPkZnW25GXFttNyQkITNVbm1tJylwKil5O0ZnW25GXFttNyQkITNsKioqKioqNGQiUUwiRmdbbkZcW203JCQhMyopKioqKioqSG5AMDVGZ1tuRlxbbTckJCEzcWttbW07ZUJtRmdwRlxbbTckJCEzV25tbW0ocF1aJEZncEZcW203JCQhMz8iW0xMTEx1KnlGNkZcW203JCQiM2NgbW1tVmhbTUZncEZcW203JCQiM3giKioqKioqcCFSPmxGZ3BGXFttNyQkIjNBZW1tbUsiZiQpKkZncEZcW203JCQiM1cqKioqKipmMEFFOEZnW25GXFttNyQkIjNNKSoqKioqPmtUaDtGZ1tuRlxbbTckJCIzdSkqKioqKlxjdCYpPkZnW25GXFttNyQkIjNlKSoqKioqZm8kZU0jRmdbbkZcW203JCQiMz9LTEw4UVNwRUZnW25GXFttNyQkIjNwKioqKioqKmYhKVssJEZnW25GXFttNyQkIjMlZm1tbSJSJHpLJEZnW25GXFttNyQkIjNzKioqKioqelE9cU9GZ1tuRlxbbTckJCIzbUpMTEJXQCMqUkZnW25GXFttNyQkIjMhUWJHaGMjR2VWRmdbbkZcW203JCQiM3ltIlxYR2F1eSVGZ1tuRlxbbTckJCIzKFtoZScpR0l4TCZGZ1tuRlxbbTckJCIzSXMheV5uJT0tZ0ZnW25GXFttNyQkIjNbbEU3J0hIeChvRmdbbkZcW203JCQiM0ZDK3NhJWY0LylGZ1tuRlxbbTckJCIzLGFrbUwtZT8mKkZnW25GXFttNyQkIjNxLUBaM2pdMTdGamptRlxbbTckJCIzd28oKTRCIjRiZSJGamptRlxbbTckJCIzRzMhKm9dZihSUSNGamptRlxbbTckJCIzVXZCVSYpelAtWUZqam1GXFttNyQkIjItKysrISoqKioqKioqRmZqbUZcW20tRlxqbDYmRl5qbEZfamxGX2psRl9qbEZdam0tRiY2JTdTNyQkIjN5VnBRVXd3KXAmRmdwRmRqbTckRl9kbiQhMyVbLjE5LGBbYiVGamptNyRGX2RuJCEzYEkmWz0jKT0uVSNGamptNyRGX2RuJCEzPV0kSGgjUWl4OkZqam03JEZfZG4kITMhPUFRQ3M9UTsiRmpqbTckRl9kbiQhMyg0VDFiITQ7LCMqRmdbbjckRl9kbiQhMyVmOUspZVdnKG8oRmdbbjckRl9kbiQhM2FIP3NmbVpibEZnW243JEZfZG4kITMhRyU0cVcqPSJ5Y0ZnW243JEZfZG4kITM9IT5CJCoqby4sXUZnW243JEZfZG4kITNjdEwmb1d4c1clRmdbbjckRl9kbiQhM2koKnozRFAlby8lRmdbbjckRl9kbiQhMzV4PXd3NFlwT0ZnW243JEZfZG4kITMhcCg9dydwWEhLJEZnW243JEZfZG4kITMlbyg9dztTLCopSEZnW243JEZfZG4kITM9NV80Zz94Jm8jRmdbbjckRl9kbiQhM29WJkdNLyk9REJGZ1tuNyRGX2RuJCEzKVJhR00zRSg+P0ZnW243JEZfZG4kITM9eD13MTdTaztGZ1tuNyRGX2RuJCEzQVcmR01beSlcOEZnW243JEZfZG4kITNYdz13MXN6LzVGZ1tuNyRGX2RuJCEzKXp3PXdFIyk+dydGZ3A3JEZfZG4kITN3TGFHTW1STExGZ3A3JEZfZG4kITMtbFYmR01aKVs9Rlg3JEZfZG4kIjM4Jyp5LypwNTdAJEZncDckRl9kbiQiM10lKXkvKlIqelFuRmdwNyRGX2RuJCIzckE3UUtkZDQpKkZncDckRl9kbiQiMy4qeS8qSCk0RUoiRmdbbjckRl9kbiQiM2tBIlFLMVJfbCJGZ1tuNyRGX2RuJCIzYUAiUUsjXFYhKj5GZ1tuNyRGX2RuJCIzJj43UUs6YVpKI0ZnW243JEZfZG4kIjN5QCJRS09iW24jRmdbbjckRl9kbiQiM1ViOWQ7QlUpKkhGZ1tuNyRGX2RuJCIzKkc3UUs1KipRTSRGZ1tuNyRGX2RuJCIzOSp5Lyo+QyZwbCRGZ1tuNyRGX2RuJCIzJUg3UUtRLSMqKlJGZ1tuNyRGX2RuJCIzVGE5ZEVIQkBWRmdbbjckRl9kbiQiM2N3bU9wNUkobyVGZ1tuNyRGX2RuJCIzYCpHKHkoeXNrNiZGZ1tuNyRGX2RuJCIza1BuKj16W25tJkZnW243JEZfZG4kIjMyJj47JXlKP0pqRmdbbjckRl9kbiQiM0MpeWckKnpabj8oRmdbbjckRl9kbiQiMy1aImV6JnooKnAkKUZnW243JEZfZG4kIjN3d1ghcHQpZlwpKkZnW243JEZfZG4kIjMoXCJmemUiMyVSN0Zqam03JEZfZG4kIjMtImVBTSg0VD07RmpqbTckRl9kbiQiM3Q/RywseShvVCNGamptNyRGX2RuJCIzKHk9WWQkKXpfaiVGamptNyRGX2RuRmdjbkZpY25GXWptLUYmNiU3YW83JCQiMy8rKytdKioqKioqXCIkIUgkITMvKysrXSoqKioqKlxGZV1vNyQkIjMrXXl3eXhTWHQhIzokITMrXXl3eXhTTnRGW15vNyQkIjMrRFJRKilRP3ZPRltebyQhMytEUlEqKVE/bE9GW15vNyQkIjNtO0UjSGYtPVgjRltebyQhM247RSNIZi09VyNGW15vNyQkIjNdaT5wVz41Uz1GW15vJCEzXWk+cFc+NUk9RltebzckJCIzTDM4WSdILCVHN0ZbXm8kITNMMzhZJ0gsJT03RltebzckJCIzcz0oZk1zNGJBKkZqam0kITNzPShmTXM0YjcqRmpqbTckJCIzYWVrSSNbMXE7J0Zqam0kITNhZWtJI1sxcTEnRmpqbTckJCIzT2YpSDwnW3ZQWUZqam0kITNPZilIPCdbdlBYRmpqbTckJCIzRkhLOlRLXTNKRmpqbSQhM0ZISzpUS10zSUZqam03JCQiM2tCXCczVnhRTSNGamptJCEza0JcJzNWeFFDI0Zqam03JCQiM0dvdC1TIm8lWztGamptJCEzR290LVMibyVbOkZqam03JCQiM11yaDNPLmh3N0Zqam0kITNdcmgzTy5odzZGamptNyQkIjNDN2VFI1FHRWIpRmdbbiQhM0M3ZUUjUUdFYihGZ1tuNyQkIjNRcSwiUSdHZyRbJ0ZnW24kITNRcSwiUSdHZyRbJkZnW243JCQiMydvRXNWcSozbF9GZ1tuJCEzJ29Fc1ZxKjNsVUZnW243JCQiM05NXi4iWzYkM1hGZ1tuJCEzTk1eLiJbNiQzTkZnW243JCQiMzl3K1siZVpBJVJGZ1tuJCEzOXcrWyJlWkElSEZnW243JCQiM3lLJnBSc29OXSRGZ1tuJCEzeUsmcFJzb05dI0ZnW243JCQiM1ljMUcseC1sSkZnW24kITNZYzFHLHgtbEBGZ1tuNyQkIjM7W2Qvdno5KSlHRmdbbiQhMztbZC92ejkpKT1GZ1tuNyQkIjM9Z0k7OTYkem8jRmdbbiQhMz1nSTs5NiR6byJGZ1tuNyQkIjM7KysrUyhSIypcI0ZnW24kITM7KysrUyhSIypcIkZnW243JCQiMzArKysrQClmSyNGZ1tuJCEzMCsrKytAKWZLIkZnW243JCQiMy0rKytnaSxmQEZnW24kITMtKysrZ2ksZjZGZ1tuNyQkIjNxbW1tIkcmUjI/RmdbbiQhM3FtbW0iRyZSMjVGZ1tuNyQkIjNYTExMdEs1Rj1GZ1tuJCEzV01MTExGLnIjKUZncDckJCIzZUxMTCRIc1ZuIkZnW24kITMlZkxMTCRIc1ZuRmdwNyQkIjM/KysrYik0blwiRmdbbiQhMystKytdJik0blxGZ3A3JCQiM3JMTEwkXFslUjhGZ1tuJCEzN1BMTExcWyVSJEZncDckJCIzIykqKioqKlwmeSFwOyJGZ1tuJCEzRykqKioqKlwmeSFwO0ZncDckJCIzJioqKioqKlxPM0UrIkZnW24kITMoZSUqKioqKipcTzNFRjY3JCQiM05LTExMM3o2JClGZ3AkIjNrbm1tbSI0IylvIkZncDckJCIzc0xMTCQpW2BQbkZncCQiM0dtbW07XllpS0ZncDckJCIzVG5tbW1yW1JdRmdwJCIzZ0tMTExHXmdcRmdwNyQkIjNBdG1tO0dwdktGZ3AkIjN5RUxMJD0yVnMnRmdwNyQkIjM3LysrXVlJUzxGZ3AkIjMpZSoqKioqXGBwZiMpRmdwNyQkIjM7KjNubW1PVj8pRjYkIjM2SExMTG0meiIqKkZncDckJCEzPigqKioqKip6LTZqIkZncCQiM3MqKioqKip6LTZqNkZnW243JCQhM3EiKioqKioqNCMzMkxGZ3AkIjM8KioqKioqNCMzMkwiRmdbbjckJCEzciQqKioqKlwjeSdHXEZncCQiM08qKioqKlwjeSdHXCJGZ1tuNyQkITMhSCoqKioqKkglPUhuRmdwJCIzRyoqKioqKkglPUhuIkZnW243JCQhMy9obW1tIT5xTSlGZ3AkIjM1bW1tMT5xTT1GZ1tuNyQkITMlKSoqKioqKipIU3UrIkZnW24kIjMlKSoqKioqKipIU3UrI0ZnW243JCQhMydITEwkZXAnUjsiRmdbbiQiMydITEwkZXAnUjsjRmdbbjckJCEzJykqKioqKipSPjROOEZnW24kIjMnKSoqKioqKlI+NE5CRmdbbjckJCEzI2VtbTtAMmhcIkZnW24kIjMjZW1tO0AyaFwjRmdbbjckJCEzIXBGa0lHVCJ6O0ZnW24kIjMhcEZrSUdUInpFRmdbbjckJCEzUSRldUE5RlAqPUZnW24kIjNRJGV1QTlGUCpHRmdbbjckJCEzVzIkSFY5bClvQEZnW24kIjNXMiRIVjlsKW9KRmdbbjckJCEzOk8hKmVQQjQsREZnW24kIjM6TyEqZVBCNCxORmdbbjckJCEzdUs4MVtZJylRSEZnW24kIjN1SzgxW1knKVFSRmdbbjckJCEzODcrT0Yoei9fJEZnW24kIjM4NytPRih6L18lRmdbbjckJCEzK0ZLJG82IUhnVUZnW24kIjMrRkskbzYhSGdfRmdbbjckJCEzWzgwT1U6YEtiRmdbbiQiM1s4ME9VOmBLbEZnW243JCQhM3RWUVw6Y2FGdUZnW24kIjNpV1FcOmNhRiUpRmdbbjckJCEzOS9YTXZ6KT45IkZqam0kIjM5L1hNdnopPkMiRmpqbTckJCEzKGVcNlc+JVs/OkZqam0kIjMwJ1w2Vz4lWz87RmpqbTckJCEzcyg9NkYqKik9XkFGamptJCIzcyg9NkYqKik9XkJGamptNyQkITNRJGUiRyEqPkQ9SUZqam0kIjNRJGUiRyEqPkQ9SkZqam03JCQhM1V2QlUmKXpQX1hGamptJCIzVXZCVSYpelBfWUZqam03JCQhM3dtSmMhKVJdJzMnRmpqbSQiM3dtSmMhKVJdJz0nRmpqbTckJCEzJTN2VzMoZnZhIipGamptJCIzJTN2VzMoZnZhIypGamptNyQkITN0VEU2J3orQkEiRltebyQiM3RURTYneitCQiJGW15vNyQkITM8XSpvVD5eZiQ9RltebyQiMztdKm9UPl5mJT1GW15vNyQkITNvO19BI2YsJ1xDRltebyQiM287X0EjZiwnZkNGW15vNyQkITN1Q3lMKVEtcG4kRltebyQiM3VDeUwpUS1wbyRGW15vNyQkITNZXGNud1ohKWV0RltebyQiM1lcY253WiEpb3RGW15vNyRGZl1vRmNdb0ZpY25GXWptLSUrQVhFU0xBQkVMU0c2JFEhNiJGXGNwLSUlVklFV0c2JDskISInRmFqbCQiMS0rKysrKytnRmpqbUZhY3A= plot(total,axes=none); LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdccTckJCEzRSUpb0IwSFhnSiEjRiQhMzYiUikqKioqKjQ7Im8hI0A3JCQhM25eOz1DQk9HRCEjRSQhM1tNYCoqKio+S2k4ISM/NyQkITNjP0wqUiVHQUwmKUYzJCEzQHpWJyoqKkhbVj9GNjckJCEzTWVyLDsvcEE/ISNEJCEzKTMnKVwpXFVrQ0ZGNjckJCEzd3ZIISp5MmVFb0Y/JCEzJ3B1ZikpXG1wMyVGNjckJCEzTy9nWkpCOj07ISNDJCEzJSk+XD4mXClHXGFGNjckJCEzKzEibyIqNGs3WSZGSiQhM29nOl44RiRSPClGNjckJCEzRTcnZSFbPV8lSCIhI0IkITNrLlFpJW9kKSozIiEjPjckJCEzKUhaJnknKTQscFZGVSQhM0cqKnBCTGt5TTtGWDckJCEzJmUkR20hRzxjLiIhI0EkITNTTDwnSCNccnpARlg3JCQhM0VATkNbcWBnSUZbbyQhM3RISVkheSIqejckRlg3JCQhMyVbYV1YJ0c3dG5GW28kITM7Zjt4ISpHRXdTRlg3JCQhM1NqJEhlKzpRUiNGLyQhMy9xYicpKlxnITRpRlg3JCQhM1JvYUolXGVXJGVGLyQhMz8yT2hYQHdiJClGWDckJCEzO2YwKW9GbF46IkY2JCEzcUEpPkYrciJcNSEjPTckJCEzPmVzJWViSTAlPkY2JCEzTXN1Qic0MXJDIkZncDckJCEzP2FCSl9pSWpJRjYkITNFXndhOEkqPVgiRmdwNyQkITNaKSkpKnpvcWc0WUY2JCEzT1N5YCMqKjNNbSJGZ3A3JCQhMzN2IlxOIVF6JmYnRjYkITNNaFR1PjkkUSg9RmdwNyQkITNtTjlcdCpSKmYiKkY2JCEzcT4sKTNRZCcqMyNGZ3A3JCQhM3VHL3llckAhPiJGWCQhM0MzJnl0MlshekFGZ3A3JCQhM2UrYTgjRyg9ZTpGWCQhM3cvY3MyWT8iXCNGZ3A3JCQhM2U+UyVRanE7LyNGWCQhM01ocHRyUiVIcyNGZ3A3JCQhMzVtISlvZ1I3OkZGWCQhMzdHJGYjSEE8KilIRmdwNyQkITM5JFFQP2U1ZWckRlgkITM/NC9TJ2UydEYkRmdwNyQkITMjcDpWUVJCQ0MmRlgkITMjUWhjJEcqKT0kcCRGZ3A3JCQhMyVbNV51JD5Ec3VGWCQhM1R5LXlcTDlBVEZncDckJCEzKXArTCwqSEIoPSJGZ3AkITNZRE9mO1N0PFpGZ3A3JCQhM0EzXUcvNHUlWyJGZ3AkITM9K0slM19xZCsmRmdwNyQkITMvVCxJI0gtcCg9RmdwJCEzd3ZnW3hfVCFIJkZncDckJCEzNVBQUF1cIilcQ0ZncCQhMzcsbW9aIykqKWViRmdwNyQkITNuWi5IJSpbUS1LRmdwJCEzRVloTyJ6W3NwJkZncDckJCEzaE1ZU3RoTUJPRmdwJCEzXWF4RnEkemxuJkZncDckJCEzIyllZS0oSFtRMiVGZ3AkITMncFlAIyo0ITNzYkZncDckJCEzbGltO21KXE1YRmdwJCEzYT5FOWwpSDlPJkZncDckJCEzbzU+ZS9DeXRcRmdwJCEzWkpkQD06ImUtJkZncDckJCEzKT4hKVs5KnosaWBGZ3AkITNjJSpbMjQ0XUxYRmdwNyQkITNzRV4tRGU5QGNGZ3AkITNILD50YyFIeSFSRmdwNyQkITNPJj0qKj4mKjNucCZGZ3AkITNhdEt4ZT4mej0kRmdwNyQkITN5VyhwSUgpW2FiRmdwJCEzWlcoKnonKWUmb1YjRmdwNyQkITNYXyE9W0FDJ0hfRmdwJCEzRW8taj0jSDl5IkZncDckJCEzTVReIT1YUDZ1JUZncCQhM11sPDU5ZHkzN0ZncDckJCEzMj4qelJFS2c3JUZncCQhM3cjPUcuPSdbJlwoRlg3JCQhM19dW04oUj9eVSRGZ3AkITMuKClbSDdJQE9URlg3JCQhMzMpKVxIdmtoOEVGZ3AkITNrXS0pPl8hUS09Rlg3JCQhM2E7M3gyPUR2PEZncCQhMyMqPSJldj4uZmcmRjY3JCQhMz9cOiJRbiRIeiMqRlgkITMrYD0mXCp6OSIqekYvNyQkITMpKipSeiNwRlYoKnlGNiQhMz4lemlTKFxlRFxGSjckJCIzOW5EJ3olWyopRyEpRlgkIjMrTkw9ZiozaDwmRi83JCQiM0kjNHRBYWpNbyJGZ3AkIjN1eWRlWDNyeVpGNjckJCIzXT88KEdCRGNiI0ZncCQiMzUzMmFIYWwkbyJGWDckJCIzT109ZyN6OzBTJEZncCQiM3JyJW9ObDlVLyVGWDckJCIzKT1sPiFwQDkoMyVGZ3AkIjMjeSl5YmF4ImVFKEZYNyQkIjNBd0U2OElNJXAlRmdwJCIzWzo9KSk+ISkzbTZGZ3A3JCQiM0lWKjQpNF1KJT0mRmdwJCIzbVYmPShIZTI6PEZncDckJCIzRjxabiUqXCk9XyZGZ3AkIjNbIlEkKltxT3BNI0ZncDckJCIzVT1CQEZdVipvJkZncCQiMzdoYiJmXVFCMiRGZ3A3JCQiM2koUWFoYj8xbCZGZ3AkIjNPaVslPWImenlQRmdwNyQkIjMlKSpSUVpOYj9WJkZncCQiMzJLJ3p6PipmMVdGZ3A3JCQiM1UtJ1tmTUkxMyZGZ3AkIjNDPzgsJVtsXyJcRmdwNyQkIjM5NUIocCpSY01ZRmdwJCIzLUBaQ0xIbSlIJkZncDckJCIzRXFaWislb2Q6JUZncCQiMzc1bzFjZypIYSZGZ3A3JCQiM2FXUiEzT0FHbyRGZ3AkIjNPP3cnZUJgeW0mRmdwNyQkIjNDc2N0U3l1UktGZ3AkIjNBX1wiPi9tIylwJkZncDckJCIzdy1zN1lqPylcI0ZncCQiM10rITQucEpaZCZGZ3A3JCQiM0NEKXljKnpiRj5GZ3AkIjNzdycpKlsyWjFLJkZncDckJCIzUEdHalptRjc6RmdwJCIzNllaYGwlcCpHXUZncDckJCIzM0hUdTlpJioqPiJGZ3AkIjNHUWkjW2ktO3QlRmdwNyQkIjNHXE8mcFkoKSkpXChGWCQiMyFlTlBIcyttNyVGZ3A3JCQiM1drLksoKVJwYl5GWCQiM3loTF0iXCxRbiRGZ3A3JCQiMz52eGIqbyNcME9GWCQiM2ciKilcWFI5c0YkRmdwNyQkIjMnZllTIXlDQSJwI0ZYJCIzJ3lbb2BwbjApSEZncDckJCIzL1wkR28lcGo2P0ZYJCIzTGgpcDA/RCg0RkZncDckJCIzU3UncDZIJ1xsOkZYJCIzT29hKEcjSDAmXCNGZ3A3JCQiMzhkPSRRIVtpLzdGWCQiMyUpSEUqNCgpUiIpRyNGZ3A3JCQiMz9xYU9MRj8nNCpGNiQiM11Wd1VtUyNbMyNGZ3A3JCQiMyEqM2EhWyUqSHVjJ0Y2JCIzdU4wPjUvOnI9RmdwNyQkIjMtPyUpSCZ6OjVpJUY2JCIzZ0ElXFBOeFptIkZncDckJCIzVUglSFY/XUIyJEY2JCIzMS0lKSpHdT1MWCJGZ3A3JCQiMyVcSEBkK3FIIz5GNiQiMypvSXpURk5MQyJGZ3A3JCQiM1FIYFRRQm1lNkY2JCIzKSkpUi8zS0ctMCJGZ3A3JCQiMyVvXnAnPiRcT3AmRi8kIjMhW0tSMTsuISlHKUZYNyQkIjMqPixvOFo/KjNERi8kIjM5Y1ltWEQtMmpGWDckJCIzISo+VWNoTWkhUShGW28kIjMjKmVSZTgtbSU+JUZYNyQkIjNqNnRUKlx0cUEkRltvJCIzYyk0IioqRyNHUD0kRlg3JCQiM205Wy4yc3hENUZbbyQiM2EiKipHZEoqeXNARlg3JCQiM2MtRF5eIylcRlZGVSQiM0QqPiEzTkFmSDtGWDckJCIzV1FOcnc8QSNHIkZVJCIzJ2ZfbVspW1InMyJGWDckJCIzRGMyLXNKUDRhRkokIjNBW3YzOTwnejkpRjY3JCQiMykqekojPUN4RmciRkokIjMqNHlxX1x1PlYmRjY3JCQiM2d4YE86cnJobkY/JCIzY1N4KCkpKjQpUjIlRjY3JCQiM0tIVSJSYnJNKyNGPyQiMyV6P18pXHMpZnIjRjY3JCQiM0NDJipRJ1JZQFgpRjMkIjNvSlwnKipcISpwLiNGNjckJCIzSFNiJzR2UVZdI0YzJCIzO3BgKioqXCQqek4iRjY3JCQiM00xcHJRTVVJSkYsJCIzMSVcKSoqKlxuKip5J0YvNyRJKnVuZGVmaW5lZEdJKnByb3RlY3RlZEdGamlsRmlpbC0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiQiIiFGYWpsRmJqbC0lKkFYRVNTVFlMRUc2IyUlTk9ORUctJStBWEVTTEFCRUxTRzYkUSE2IkZbW20tJSVWSUVXRzYkOyQhMTlNZUo9VkNmISM7JCIxXWx6MXo6PGZGY1ttOyQhMXE8LikzZl4jZkZjW20kIjF1MGVRajxFZkZjW20=