Exercice 7On d\351finit la param\351trisationrestart;x:=t->t/(1+t^3);y:=t->(t^2)/(1+t^3);NiM+SSJ4RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiY5JCIiIiwmRi5GLiokRi0iIiRGLiEiIkYlRiVGJQ==NiM+SSJ5RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlKiY5JCIiIywmIiIiRjAqJEYtIiIkRjAhIiJGJUYlRiU=Domaine d'EtudeR\351duisons l'intervalle d'\351tude \340 -1..1, En effet[x(1/t),y(1/t)]=[y(t),x(t)];NiMvNyQqJkkidEc2IiEiIiwmIiIiRioqJEYmISIkRipGKComRiYhIiNGKUYoNyQqJkYmIiIjLCZGKkYqKiRGJiIiJEYqRigqJkYmRipGMkYosimplify(%);NiMvNyQqJkkidEc2IiIiIywmIiIiRioqJEYmIiIkRiohIiIqJkYmRipGKUYtRiQ=evalb(%);NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ=Donc la partie de courbe correspondant aux autres param\351tres se d\351duira par sym\351trie / \340 la premi\350re bissectriceCalculons le vecteur vitesseVt:=[D(x)(t),D(y)(t)];NiM+SSNWdEc2IjckLCYqJCwmIiIiRioqJEkidEdGJSIiJEYqISIiRioqJkYsRi1GKSEiIyEiJCwmKiZGLEYqRilGLiIiIyomRiwiIiVGKUYwRjE=Vt:=simplify(Vt);NiM+SSNWdEc2IjckLCQqJiwmISIiIiIiKiRJInRHRiUiIiQiIiNGKywmRitGK0YsRishIiNGKiwkKihGLUYrLCZGMUYrRixGK0YrRjBGMUYqV:=unapply(Vt,t);NiM+SSJWRzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlNyQsJComLCYhIiIiIiIqJDkkIiIkIiIjRjEsJkYxRjFGMkYxISIjRjAsJCooRjNGMSwmRjdGMUYyRjFGMUY2RjdGMEYlRiVGJQ==Cette courbe est donc r\351guli\350reTangente aux points A=M(0)=(0,0), B=M((1/2)^(1/3)) et C=M(1)=(1/2,1/2)Ces tangentes sont dirig\351es par les vecteursV(0);V((1/2)^(1/3));V(1);NiM3JCIiIiIiIQ==NiM3JCIiISwkKiQiIiMjRiciIiQjIiIiRik=NiM3JCMhIiIiIiUjIiIiRiY=D'o\371 les \351quations param\351tr\351es des tangentes XTA:=x(0)+t*op(1,V(0));YTA:=y(0)+t*op(2,V(0));NiM+SSRYVEFHNiJJInRHRiU=NiM+SSRZVEFHNiIiIiE=XTB:=x((1/2)^(1/3))+t*op(1,V((1/2)^(1/3)));YTB:=y((1/2)^(1/3))+t*op(2,V((1/2)^(1/3)));NiM+SSRYVEJHNiIsJCokIiIjI0YoIiIkIyIiIkYqNiM+SSRZVEJHNiIsJiokIiIjIyIiIiIiJEYpKiZJInRHRiVGKkYoI0YoRitGKQ==XTC:=x(1)+t*op(1,V(1));YTC:=y(1)+t*op(2,V(1));NiM+SSRYVENHNiIsJiMiIiIiIiNGKEkidEdGJSMhIiIiIiU=NiM+SSRZVENHNiIsJiMiIiIiIiNGKEkidEdGJSNGKCIiJQ==EqTA:=[XTA,YTA,t=-infinity..infinity]:EqTB:=[XTB,YTB,t=-infinity..infinity]:EqTC:=[XTC,YTC,t=-infinity..infinity]:Branches Infinies \351ventuellesLimit('x'(t),t=-1,right)=limit(x(t),t=-1,right),Limit('y'(t),t=-1,right)=limit(y(t),t=-1,right) ;NiQvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkieEdGKTYjSSJ0R0YpL0YuISIiSSZyaWdodEdGKSwkSSlpbmZpbml0eUdGJ0YwLy1GJTYlLUkieUdGKUYtRi9GMUYzD'o\371 une branche infinie lorsque t->-1^+, Calculons la limite du taux y/xLimit('y'(t)/'x'(t),t=-1,right)=limit(y(t)/x(t),t=-1,right);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlKiYtSSJ5R0YpNiNJInRHRikiIiItSSJ4R0YpRi4hIiIvRi9GM0kmcmlnaHRHRilGMw==La courbe admet donc une direction asymptotique la droite d'\351quation y=-x. Calculons alors la limite suivanteLimit('y'(t)+'x'(t),t=-1,right)=limit(y(t)+x(t),t=-1,right);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLCYtSSJ5R0YpNiNJInRHRikiIiItSSJ4R0YpRi5GMC9GLyEiIkkmcmlnaHRHRikjRjQiIiQ=Donc la courbe admet une asymptote oblique d'\351quation y=-x-1/3... d'o\371 son \351quation param\351triqueXA:=t;YA:=-t-1/3;NiM+SSNYQUc2IkkidEdGJQ==NiM+SSNZQUc2IiwmSSJ0R0YlISIiI0YoIiIkIiIiEqA:=[XA,YA,t=-infinity..infinity]:Position Relative: pour cela on \351tudie le signe de y(tau)+x(tau)+1/3 pour tau proche de -1 (par valeurs sup\351rieures)assume(tau>-1):is(y(tau)+x(tau)+1/3>0);NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ=#V\351rifions le \340 l'aide de son expression alg\351brique:factor(y(t)+x(t)+1/3);NiMsJComLCYiIiJGJkkidEc2IkYmIiIjLCgqJEYnRilGJkYnISIiRiZGJkYsI0YmIiIkOn a donc l'arc est "au dessus" de cette asymptote... Par sym\351trie / Ox on a la m\352me asymptote et la m\352me position relative pour t->infinityEtude des variations de x et yplot(x,-1..1,-5..1);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdgcDckJCEzRysrKyF5d2opKiohIz0kITMpeiskUT84IW9XIyEjOjckJCEzWSoqKioqKmZOdnMqKkYsJCEzIipvS1UjUSlSQjdGLzckJCEzdyoqKioqKlIuOGYqKkYsJCEzYVY5J3AmUSdmOikhIzs3JCQhM2kqKioqKlw2MmIlKipGLCQhM3o0XkddYyVwNidGOjckJCEzXSoqKioqKiopUSk9JCoqRiwkITNJNWFTXihHTipbRjo3JCQhM3kqKioqKipwMUU9KipGLCQhMyU0IVszZ0UiejIlRjo3JCQhMzIrKytddWovKipGLCQhM0teS0EiR0RgXCRGOjckJCEzTSsrK0lVLCIqKSpGLCQhMyFbU0opUjNRZUlGOjckJCEzYSoqKioqKjQ1UngpKkYsJCEzW3QmPSp6O2A9RkY6NyQkITMjKSoqKioqKip5blAnKSpGLCQhM2Epej1rP1xtVyNGOjckJCEzNSsrK3FYOV0pKkYsJCEzVjRaISpScT5DQUY6NyQkITMoKioqKioqXE1AbCQpKkYsJCEzMUJnSUp2IilRP0Y6NyQkITMlKSoqKioqKj4iKSpHIykqRiwkITMtMiZmKTNiJj4pPUY6NyQkITM4KysrK1xGNCkqRiwkITMvUyQ0eTYrdnUiRjo3JCQhM1UrKyshb15jeipGLCQhMypSUmRQKCpwNGoiRjo3JCQhM2cqKioqKipmJUc/eSpGLCQhM1BBJFxdMy8hSDpGOjckJCEzKSkqKioqKipSX1NvKCpGLCQhM2lFL10iR0shUjlGOjckJCEzOysrKz8/eWEoKkYsJCEzZW9IeVRiMGY4Rjo3JCQhM1grKysrKWU2dSpGLCQhM2VjcDUicCZcKEciRjo3JCQhM0wrKyt2YmBGKCpGLCQhM0g0bzhuLDRCN0Y6NyQkITM/KysrXUIiUnIqRiwkITNbRThQU3AiWzsiRjo3JCQhM1srKytJIipHKygqRiwkITNUc3Z2KylSPTYiRjo3JCQhM20qKioqKio0Zm0nbypGLCQhMzszRS9IellqNUY6NyQkITMlKioqKioqKipvVUluKkYsJCEzJXpwKT5oYzc+NUY6NyQkITNfKysrXWl6WCcqRiwkITMkKipSXE8qNHExJSohIzw3JCQhM2MqKioqKlwhKVwmPScqRiwkITNdJFFAI2VsPE0oKUZjczckJCEzcSoqKioqKmZMSSJmKkYsJCEzSSU+VyJHb0ZeIilGY3M3JCQhMy8rKys8cDBrJipGLCQhM0FEcE5obz5Ud0ZjczckJCEzXCsrK11IazsmKkYsJCEzIykpeTdqYHUwKm9GY3M3JCQhM2UqKioqKip6KkcjcCUqRiwkITNjMSlmX0BdUkYnRmNzNyQkITN4KioqKioqNF0iPVUqRiwkITMtUSpwYTJkJGVkRmNzNyQkITNRKysrWDVTdSQqRiwkITMkcGliKW9DIzNLJkZjczckJCEzMSsrKzVKZHojKkYsJCEzLzwjMzE+dyM9WUZjczckJCEzYSsrK3JedSU9KkYsJCEzcTw6PEZDJyl5U0ZjczckJCEzXysrK1M3NXkhKkYsJCEzWi9YSHR2Wi9PRmNzNyQkITM7KysrMHRYciopRiwkITM0IT4meiJwVSJHS0ZjczckJCEzQSsrK3ZMIlsnKSlGLCQhM0oyYCNRKVxAQUhGY3M3JCQhMy0rKytVJXAiZSgpRiwkITNVJyozTEJvYW9FRmNzNyQkITM6KysrbHhZViYpRiwkITMjUSEpM0JZYChwQUZjczckJCEzXioqKioqPjRtKEckKUYsJCEzQ0tkRDxhW3M+RmNzNyQkITNcKysrQE9TLHpGLCQhM1MxJj4pWzFSZjpGY3M3JCQhMzgrKysvUj0wdkYsJCEzTE9nQWdFOys4RmNzNyQkITNxKioqKipwTEBcNChGLCQhMzQlcCM0UmJsLjZGY3M3JCQhM0srKysvc2lxbUYsJCEzNytOYmdgVidbKkYsNyQkITNXKysrKHkkcFppRiwkITN5UCo9dllIRkUpRiw3JCQhM3MqKioqKkh5YUUiZUYsJCEzKVJAJUhXZj5Mc0YsNyQkITMqKSoqKioqND5zJUhhRiwkITMzaio+YyEzNGtrRiw3JCQhMyMpKioqKioqXCQqNCkqXEYsJCEzJT4qeUZyTT02ZEYsNyQkITM5KysrXV8mXGMlRiwkITM6TGltXFcnWy8mRiw3JCQhMzErKytdMWFaVEYsJCEzdSRRU3kjcD1tV0YsNyQkITMxKysrLyMpW29QRiwkITNjaUo5PVxkIilSRiw3JCQhM0QrKyskPWV4SiRGLCQhM3Zid1IiUjtOVyRGLDckJCEzMisrK0wyJGYkSEYsJCEzZFxwL24pZUAsJEYsNyQkITMhKioqKioqcGp1PFwjRiwkITNbSj9cKVFKNGAjRiw3JCQhMzMrKytMN2kpNCNGLCQhMylSI1FbaiMqPj1ARiw3JCQhMzMrKytQJ3BzbSJGLCQhMysnPkkkUUcudjtGLDckJCEzNSsrKzc0X2M3RiwkITMnZl8oKXpoPSFmN0YsNyQkITMxKysrITN4JXojKSEjPiQhMyl5dF1hIil5VEcpRmddbDckJCEzSCsrKytzJFFNJUZnXWwkITNzenVRbEs+V1ZGZ11sNyQkITNjKioqKioqKio0enIpKiEjQCQhM3NVcFw0NXpyKSpGYl5sNyQkIjNDKysrKyFvMkolRmddbCQiMztgI1wsckEvSiVGZ11sNyQkIjM3KysrKyVRI1wiKUZnXWwkIjNkU3MkZltJWzkpRmddbDckJCIzIyoqKioqKipmIipbSDdGLCQiMyhIS3RFTDNzQSJGLDckJCIzJykqKioqKioqcHZ4bCJGLCQiMyUpeUMlKlFzRF07Riw3JCQiMysrKytJMHh3P0YsJCIzKSpcIjN1IVJMZT9GLDckJCIzKSkqKioqKipmJnBAWyNGLCQiMykqKlFzbFAieVdDRiw3JCQiM3YqKioqKip6Z0hLSEYsJCIzRXMoemZaIz1nR0YsNyQkIjMpKioqKioqKnBadk9MRiwkIjM4JypcTXoyQjxLRiw3JCQiMzsrKytdMmdvUEYsJCIzRyp6blVWVHJkJEYsNyQkIjMpKioqKioqKipSPCpmVEYsJCIzcUQoPlAqcGMhKVFGLDckJCIzQSsrK10pSHhlJUYsJCIzczdXJnlSXVA9JUYsNyQkIjM9KysrSSFvLSpcRiwkIjMqeSgqejwrbydRV0YsNyQkIjNwKioqKioqNGsuNmFGLCQiMz0mbyRwQkYrcllGLDckJCIzVSoqKioqKj5XVEFlRiwkIjNXPCcqZj10aGlbRiw3JCQiMykqKioqKioqZiEqM2BpRiwkIjNdcjp6eiFvWC0mRiw3JCQiM0MrKytJKnp5bSdGLCQiMzYpKj4iUTleSjkmRiw3JCQiM2MqKioqKio0TjEjNChGLCQiM2BTQCMpZSxSRl9GLDckJCIzdioqKioqKkhZdDd2RiwkIjMpPmNSU1klcHZfRiw3JCQiM1kqKioqKioqcChHKip5RiwkIjNPbG03cXBAIkgmRiw3JCQiM3AqKioqKipSNktVJClGLCQiMzdpaGRiJz0heV9GLDckJCIzNCsrK0liZFEoKUYsJCIzJXorR2t4XDZDJkYsNyQkIjNHKysrZ2AxaCIqRiwkIjM7LFlPVHI3el5GLDckJCIzYSoqKioqKlI/V2wmKkYsJCIzTTRVKFszIyk0NSZGLDckJCIiIiIiISQiMysrKysrKysrXUYsLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJEZbZmxGZGZsRmVmbC0lK0FYRVNMQUJFTFNHNiRRITYiRmlmbC0lJVZJRVdHNiQ7JCEjNUZkZmxGYmZsOyQhI11GZGZsRmJmbA==plot(y,-1..1,-1..10);LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdkcDckJCEzRysrKyF5d2opKiohIz0kIjNYQFk2Kil6WVZDISM6NyQkITNZKioqKioqZk52cyoqRiwkIjN0Kik0T2RdMT83Ri83JCQhM3cqKioqKipSLjhmKipGLCQiM1o3MykqNDJqQSIpISM7NyQkITNpKioqKipcNjJiJSoqRiwkIjNHJyl5cFtFaCQzJ0Y6NyQkITNdKioqKioqKilRKT0kKipGLCQiM18/TjhQZj5nW0Y6NyQkITN5KioqKioqcDFFPSoqRiwkIjNWOjlBditlV1NGOjckJCEzMisrK111ai8qKkYsJCIzXWZOLm9IKj5ZJEY6NyQkITNNKysrSVUsIiopKkYsJCIzaXhKdlMpW10tJEY6NyQkITNhKioqKioqNDVSeCkqRiwkIjNLInppdi4rX28jRjo3JCQhMyMpKioqKioqKnluUCcpKkYsJCIzaCFHcU4neko4Q0Y6NyQkITM1KysrcVg5XSkqRiwkIjMnW3VBJlJpJzM+I0Y6NyQkITMoKioqKioqXE1AbCQpKkYsJCIzMSE+RGxAKFswP0Y6NyQkITMlKSoqKioqKj4iKSpHIykqRiwkIjNDcCoqKUhzRCdbPUY6NyQkITM4KysrK1xGNCkqRiwkIjNFP3VMLzQ8OTxGOjckJCEzVSsrKyFvXmN6KkYsJCIzSTxtTXc4ayhmIkY6NyQkITNnKioqKioqZiVHP3kqRiwkIjM3dDNhWmhuJlwiRjo3JCQhMykpKioqKioqUl9TbygqRiwkIjNEI3o4ei8wZFMiRjo3JCQhMzsrKys/P3lhKCpGLCQiMz0nZTtqMEhkSyJGOjckJCEzWCsrKyspZTZ1KkYsJCIzRWgpUSIpKipwVEQiRjo3JCQhM0wrKyt2YmBGKCpGLCQiMyE0Z0Q3SmwoKj0iRjo3JCQhMz8rKytdQiJScipGLCQiM0ZDaURtSFxKNkY6NyQkITNbKysrSSIqRysoKkYsJCIzay8hZkx2OyZ5NUY6NyQkITNtKioqKioqNGZtJ28qRiwkIjM9TE5ZYGU5STVGOjckJCEzJSoqKioqKioqb1VJbipGLCQiM2EjW1xzLVkhZSkqISM8NyQkITNDKysrcSU+JWYnKkYsJCIzLTgkZl5WJTRdJSpGXnM3JCQhM18rKytdaXpYJypGLCQiMz9uOSVwNjdOMipGXnM3JCQhM3AqKioqKipISTxLJypGLCQiMzslSEAuZzhbcylGXnM3JCQhM2MqKioqKlwhKVwmPScqRiwkIjNhJ2UiNEI3LCwlKUZeczckJCEzcSoqKioqKmZMSSJmKkYsJCIza2FwKyQpbzg9eUZeczckJCEzLysrKzxwMGsmKkYsJCIzalI+Z3BUMzN0Rl5zNyQkITMlKSoqKioqXCQqXC5hKkYsJCIzWzAhKipIdWNNInBGXnM3JCQhM1wrKytdSGs7JipGLCQiM1dpXUNlUF5kbEZeczckJCEzLSsrK2xmJEhcKkYsJCIzWGZNWyJRSFtCJ0ZeczckJCEzZSoqKioqKnoqRyNwJSpGLCQiM3hSOnU+ciU0JWZGXnM3JCQhM3gqKioqKio0XSI9VSpGLCQiM0pQLW03dlREYUZeczckJCEzUSsrK1g1U3UkKkYsJCIzc20qSDdQX3opXEZeczckJCEzMSsrKzVKZHojKkYsJCIzc0NASGJKYyZHJUZeczckJCEzYSsrK3JedSU9KkYsJCIzKVJwOCIpPkpqdSRGXnM3JCQhM18rKytTNzV5ISpGLCQiM2MueHdLNz1zS0ZeczckJCEzOysrKzB0WHIqKUYsJCIzQUspKVFMVzYnKkdGXnM3JCQhM0ErKyt2TCJbJykpRiwkIjM/KipSS1ohKlshZiNGXnM3JCQhMy0rKytVJXAiZSgpRiwkIjM7JEdrVV9lckwjRl5zNyQkITM6KysrbHhZViYpRiwkIjMlNEN0UmJjIlI+Rl5zNyQkITNeKioqKio+NG0oRyQpRiwkIjNULC8tbXAkR2siRl5zNyQkITNcKysrQE9TLHpGLCQiM3kpZjg+XFBAQiJGXnM3JCQhMzgrKysvUj0wdkYsJCIzKSlwLTZxKWZ6dipGLDckJCEzcSoqKioqcExAXDQoRiwkIjNbJCpwK0wjXC4keUYsNyQkITNLKysrL3NpcW1GLCQiM2JzJjQmeXQvR2pGLDckJCEzVysrKyh5JHBaaUYsJCIzJSkqKXp5Yi5JaV5GLDckJCEzcyoqKioqSHlhRSJlRiwkIjM9J3ooPityUy9VRiw3JCQhMyopKioqKio0PnMlSGFGLCQiM1RQNyNwN2cnNE5GLDckJCEzIykqKioqKipcJCo0KSpcRiwkIjNJeENiUmldYUdGLDckJCEzOSsrK11fJlxjJUYsJCIzN0JVXVghZUhJI0YsNyQkITMxKysrXTFhWlRGLCQiM3VnO1AkPXBCJj1GLDckJCEzMSsrKy8jKVtvUEYsJCIzZXhrQjY9WCs6Riw3JCQhM0QrKyskPWV4SiRGLCQiM1w/YWVvYVpVNkYsNyQkITMyKysrTDIkZiRIRiwkIjNHLDtXIXoqW1YpKSEjPjckJCEzISoqKioqKnBqdTxcI0YsJCIzTU87JD1rNWxJJ0ZkXWw3JCQhMzMrKytMN2kpNCNGLCQiMz05QDJdekhYV0ZkXWw3JCQhMzMrKytQJ3BzbSJGLCQiMyNmJ2VLI1JKRnojRmRdbDckJCEzNSsrKzc0X2M3RiwkIjMnZW0pNEFLKT5lIkZkXWw3JCQhMzErKyshM3gleiMpRmRdbCQiMylRZjlIJ28nKWVvISM/NyQkITNIKysrK3MkUU0lRmRdbCQiMyE0J3osSm8vKCk9Rl5fbDckJCEzYyoqKioqKioqNHpyKSohI0AkIjN1IkdWVHdEX3UqISNDNyQkIjNDKysrKyFvMkolRmRdbCQiM2luJVEmR0s3ZT1GXl9sNyQkIjM3KysrKyVRI1wiKUZkXWwkIjNeVSFcZGA7dWonRl5fbDckJCIzIyoqKioqKipmIipbSDdGLCQiMz9DTjNVJFIpMzpGZF1sNyQkIjMnKSoqKioqKipwdnhsIkYsJCIzdk16WVxqdk5GRmRdbDckJCIzKysrK0kweHc/RiwkIjNxJSpcISkqPihvdVVGZF1sNyQkIjMpKSoqKioqKmYmcEBbI0YsJCIzSSQpR3k4Pk9vZ0ZkXWw3JCQiM3YqKioqKip6Z0hLSEYsJCIzIyl6LFNpPSFwUSlGZF1sNyQkIjMpKioqKioqKnBadk9MRiwkIjNPQnEiXCw2TjIiRiw3JCQiMzsrKytdMmdvUEYsJCIzYXFQPyp5IjNbOEYsNyQkIjMpKioqKioqKipSPCpmVEYsJCIzalBTIWYiUUc5O0YsNyQkIjNBKysrXSlIeGUlRiwkIjNnMSc9JmU7Uj4+Riw3JCQiMz0rKytJIW8tKlxGLCQiMyk0bTFESTldQCNGLDckJCIzcCoqKioqKjRrLjZhRiwkIjM6cToiNGUnXEZERiw3JCQiM1UqKioqKio+V1RBZUYsJCIzMTljWj50QEpHRiw3JCQiMykqKioqKioqZiEqM2BpRiwkIjMoeilwNHByIT45JEYsNyQkIjNDKysrSSp6eW0nRiwkIjMjcDB5KUc5UkhNRiw3JCQiM2MqKioqKio0TjEjNChGLCQiMytoOnoqSClIMlBGLDckJCIzdioqKioqKkhZdDd2RiwkIjNNSSpHKFwjKltqUkYsNyQkIjNZKioqKioqKnAoRyoqeUYsJCIzbSNHOkleJW96VEYsNyQkIjNwKioqKioqUjZLVSQpRiwkIjMoKlJGeGdFNC5XRiw3JCQiMzQrKytJYmRRKClGLCQiMzl3ZWA9JD0rZSVGLDckJCIzRysrK2dgMWgiKkYsJCIzSTIielxBS1l1JUYsNyQkIjNhKioqKioqUj9XbCYqRiwkIjNfZ1UqeiVbSnpbRiw3JCQiIiIiIiEkIjMrKysrKysrK11GLC0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiRGYWdsRmpnbEZbaGwtJStBWEVTTEFCRUxTRzYkUSE2IkZfaGwtJSVWSUVXRzYkOyQhIzVGamdsRmhnbDtGZWhsJEZpZ2xGYWdsvarx:=D(x)(t)/abs(D(x)(t)):vary:=D(y)(t)/abs(D(y)(t))/2:On trace en rouge le signe x' et en vert le signe de y'plot([varx,vary],t=-1..1,discont=true,thickness=[3,3]);LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JjdmbjckJCEzSysrKzU/eSgpKiohIz0kIiIiIiIhNyQkITNhKioqKioqPlNjdioqRixGLTckJCEzJykqKioqKipIZ01qKipGLEYtNyQkITM9KysrUyFHNiYqKkYsRi03JCQhM3IqKioqKipmP3BFKipGLEYtNyQkITNOKysrITNjQSEqKkYsRi03JCQhM18rKys/VFFgKSpGLEYtNyQkITMrKysrbEBeLykqRixGLTckJCEzbCoqKioqKlwjb25xKkYsRi03JCQhMzwrKytLVi00JypGLEYtNyQkITMiKioqKioqKjQ5JCpRJSpGLEYtNyQkITMxKysrJFxRKW8jKkYsRi03JCQhM3EqKioqKnokUkUnKSkpRixGLTckJCEzSysrK0pNOiwmKUYsRi03JCQhM0wrKysoR3R5NilGLEYtNyQkITNlKioqKio0YEJEdyhGLEYtNyQkITN5KioqKioqUiV6WFIoRixGLTckJCEzNSsrK042MDlxRixGLTckJCEzeioqKioqKio9VlpqJ0YsRi03JCQhM0orKytYJHlYQydGLEYtNyQkITNVKysrUDQjNCFmRixGLTckJCEzJCoqKioqKjQ0V1NeJkYsRi03JCQhMzsrKysjcHliNyZGLEYtNyQkITM3KysrKUg/N3YlRixGLTckJCEzeioqKioqSCxuN1QlRixGLTckJCEzMisrK3YnSHErJUYsRi03JCQhMycqKioqKipwaShla09GLEYtNyQkITMvKysrO2hDbUtGLEYtNyQkITNFKysrI1FZTyJIRixGLTckJCEzJykqKioqKjRmKXlFREYsRi03JCQhMyUqKioqKioqKVszJWVARixGLTckJCEzJyoqKioqKnpcVVN4IkYsRi03JCQhMyMqKioqKipIYHU1VSJGLEYtNyQkITMlKioqKioqeiozTlM1RixGLTckJCEzUSoqKioqKj4vJylbayEjPkYtNyQkITM3KysrP3NLMUlGYHJGLTckJCIzVCsrKyshSHE2KCEjP0YtNyQkIjMtKysrKz56X1hGYHJGLTckJCIzXCoqKioqKio0WzBKKUZgckYtNyQkIjMtKysrU3FqJT4iRixGLTckJCIzLysrKz9KTClmIkYsRi03JCQiMzUrKys1PzJoPkYsRi03JCQiMyEqKioqKioqKj10JFtCRixGLTckJCIzOSsrK0ljSypwI0YsRi03JCQiM0crKytTJDRJMyRGLEYtNyQkIjMmKSoqKioqKjRlLVdNRixGLTckJCIzIykqKioqKipcP1JAUUYsRi03JCQiM3kqKioqKio+bEwhPiVGLEYtNyQkIjMjKioqKioqKio9KGV3WEYsRi03JCQiMy0rKyshXCNmW1xGLEYtNyQkIjM2KysrUzstSGBGLEYtNyQkIjNbKysrUzFJMWRGLEYtNyQkIjM3KysrZzMpSDAnRixGLTckJCIzXyoqKioqKj5iSl1rRixGLTckJCIzSysrKyFRJ3Awb0YsRi03JCQiM18qKioqKioqWzFZPShGLEYtNyQkIjMnKioqKioqKj49Rlp2RixGLTckJCIzPSsrK1NfK1B6RixGLTdTNyQkIjM7KysrIUcwcSR6RiwkISIiRi83JCQiMzlmbyZScHM+KXpGLEZbdzckJCIzVm43UysnKTRAISlGLEZbdzckJCIzPTspW1V4KjRsISlGLEZbdzckJCIzIj4kKVFraCNSNCIpRixGW3c3JCQiM3coZiJbVVxaYCIpRixGW3c3JCQiM11mUGwsXE0lPilGLEZbdzckJCIzVDNoNHhMbU8jKUYsRlt3NyQkIjMjM3pOXD9IL0cpRixGW3c3JCQiMylbYDVfbmFTSylGLEZbdzckJCIzO0gra0wpRypvJClGLEZbdzckJCIzdVQtIm8sYSUzJSlGLEZbdzckJCIzK0hkYTYrJkhYKUYsRlt3NyQkIjNHJ281NnJHd1wpRixGW3c3JCQiM3NKSyFwIlxvUyYpRixGW3c3JCQiMz8lNEBtMiV5eiYpRixGW3c3JCQiMzJGdEZmbkZFJylGLEZbdzckJCIzKSp6QiUqZkBtbCcpRixGW3c3JCQiMycpeS4oUnV3OXIpRixGW3c3JCQiMyk9bjxRVEk/dilGLEZbdzckJCIzTWY1MDxVXyd6KUYsRlt3NyQkIjNjWHJmUkcqKVEpKUYsRlt3NyQkIjNvNk9ZXys1JCkpKUYsRlt3NyQkIjMnUk10UTIncEIqKUYsRlt3NyQkIjMxT2RIblZbbiopRixGW3c3JCQiMylRJGZvKDRvSCwqRixGW3c3JCQiM2lLIylwPT1jXyEqRixGW3c3JCQiMzNZcDRBVEsmNCpGLEZbdzckJCIzJltALWV3LCZSIipGLEZbdzckJCIzOUpqUXI0cyM9KkYsRlt3NyQkIjNLNiJ6XXhQWEEqRixGW3c3JCQiMz8nMzVnP280RipGLEZbdzckJCIzWDMleUssKW83JCpGLEZbdzckJCIzPy0+WDdHQmQkKkYsRlt3NyQkIjNLOz87QHFmKFIqRixGW3c3JCQiM1U+bydHd0Q8VypGLEZbdzckJCIzVSN5eChwdUMkWypGLEZbdzckJCIzKkd3TnVoXG1fKkYsRlt3NyQkIjNDaDwnKlxKM3AmKkYsRlt3NyQkIjMuaTgpZjcyTmgqRixGW3c3JCQiM1VKSSFbcCNIYycqRixGW3c3JCQiM2g8KXomPXIvKygqRixGW3c3JCQiM08qZk9PQlJNdSpGLEZbdzckJCIzUVpJJTMzN0x5KkYsRlt3NyQkIjM+TixSajMsSCkqRixGW3c3JCQiM3cjUnojKlIlKSlwKSpGLEZbdzckJCIzPj4xaThUWTgqKkYsRlt3NyQkIjMheVUiKjNZdl4mKipGLEZbdzckRi1GW3ctJSpUSElDS05FU1NHNiMiIiQtJSZDT0xPUkc2JiUkUkdCRyQiIzVGXHckRi9GXHdGZWBsLUYmNiY3Zm43JCQhM2UqKioqKioqUSk9JCoqKkYsJCEzKysrKysrKytdRiw3JCQhM0crKysheXdqKSoqRixGXGFsNyQkITMpKSoqKioqKnBeY3oqKkYsRlxhbDckJCEzWSoqKioqKmZOdnMqKkYsRlxhbDckJCEzdyoqKioqKlIuOGYqKkYsRlxhbDckJCEzaSoqKioqXDYyYiUqKkYsRlxhbDckJCEzeSoqKioqKnAxRT0qKkYsRlxhbDckJCEzTSsrK0lVLCIqKSpGLEZcYWw3JCQhMygqKioqKipcTUBsJCkqRixGXGFsNyQkITNfKioqKioqZSVHP3kqRixGXGFsNyQkITMpKioqKioqKj4wPyhvKkYsRlxhbDckJCEzdSoqKioqZmVzQmYqRixGXGFsNyQkITNhKioqKio+cyUzeiQqRixGXGFsNyQkITMjKioqKioqei8kUWsiKkYsRlxhbDckJCEzVysrKzg9cV0qKUYsRlxhbDckJCEzdyoqKioqXCY+Zl8oKUYsRlxhbDckJCEzOSsrK3MxWVomKUYsRlxhbDckJCEzJCoqKioqKmZnOGBMKUYsRlxhbDckJCEzLysrKykqbyVRNylGLEZcYWw3JCQhM0IrKysnUkZqIXpGLEZcYWw3JCQhM1MrKyssaHQ5eEYsRlxhbDckJCEzXSoqKioqKnonXCEqXChGLEZcYWw3JCQhM1kqKioqKjRqeENHKEYsRlxhbDckJCEzJyoqKioqKjRMcVAyKEYsRlxhbDckJCEzXSoqKioqKjNUQyUpb0YsRlxhbDckJCEzPysrKyo0eillbUYsRlxhbDckJCEzIykqKioqKlJQbHpZJ0YsRlxhbDckJCEzUSsrK0Z0KWVDJ0YsRlxhbDckJCEzXSoqKioqXGk1JFxnRixGXGFsNyQkITNaKysrRltqTGVGLEZcYWw3JCQhMzUrKytsL0VHY0YsRlxhbDckJCEzOSsrK2tRKFJUJkYsRlxhbDckJCEzdCoqKioqKnA9PjxfRixGXGFsNyQkITMjKSoqKioqZiFmJFwrJkYsRlxhbDckJCEzMSsrKzg7WSV5JUYsRlxhbDckJCEzcyoqKioqPjRRRGYlRixGXGFsNyQkITMnKSoqKioqSFZiX1ElRixGXGFsNyQkITNDKysraUA2clRGLEZcYWw3JCQhMyUpKioqKioqXFpoaFJGLEZcYWw3JCQhM0ErKytLXyIqZVBGLEZcYWw3JCQhM3kqKioqKmYoPiZRYCRGLEZcYWw3JCQhM0ErKytKRWlKTEYsRlxhbDckJCEzQysrK1InKnA6SkYsRlxhbDckJCEzLisrKzw4Lz9IRixGXGFsNyQkITN1KioqKioqKjNOaHEjRixGXGFsNyQkITM3KysrLGcnW10jRixGXGFsNyQkITMrKysrNT1bJUgjRixGXGFsNyQkITM1KysrM0d6KTMjRixGXGFsNyQkITMlKioqKioqZltiTSg9RixGXGFsNyQkITM1KysrXisxbTtGLEZcYWw3JCQhMzcrKytrI29SWCJGLEZcYWw3JCQhMy4rKysvRmpWN0YsRlxhbDckJCEzLysrK3BoTl01RixGXGFsNyQkITMhKSoqKioqKnpXUilHKUZgckZcYWw3JCQhM2MrKytJRDcyakZgckZcYWw3JCQhMyMpKioqKioqKlF0WT4lRmByRlxhbDckJCEzMSsrKz8renNARmByRlxhbDckJCEzNysrKysrKys/ISNFRlxhbDdTNyQkIjM3KysrKysrKz9GaVttJCIzKysrKysrKytdRiw3JCQiM2dOc0k3Y3J6QEZgckZeXG03JCQiM2cleSFvUFZGd1NGYHJGXlxtNyQkIjNnZyRbI3pIOjRpRmByRl5cbTckJCIzI3pLYVxzcGhOKUZgckZeXG03JCQiM3lPWlsyIylIXDVGLEZeXG03JCQiM1VdPVVsITN1QyJGLEZeXG03JCQiMztAXE1bJFJEWCJGLEZeXG03JCQiMylRSChlOWtvaztGLEZeXG03JCQiM10kcChcQUo6dz1GLEZeXG03JCQiM0MpKWY5Q0VuJDQjRixGXlxtNyQkIjMlKVFoZj5SRSZHI0YsRl5cbTckJCIzQyo0KSoqUi4mNF0jRixGXlxtNyQkIjNIYlxjKlFBdnIjRixGXlxtNyQkIjMqM2FaIipvSGkjSEYsRl5cbTckJCIza2FebzZmdjpKRixGXlxtNyQkIjM/IjReOyM0N1RMRixGXlxtNyQkIjNuaiNwaWtNP2AkRixGXlxtNyQkIjNldTx1JHA3VHYkRixGXlxtNyQkIjMnUSY+ViZSKm9dUkYsRl5cbTckJCIzZ3BzIkg+bGo7JUYsRl5cbTckJCIzeT9sK2ImUjxQJUYsRl5cbTckJCIzKTNHaG06RWdlJUYsRl5cbTckJCIzPzx4LF0iM0d5JUYsRl5cbTckJCIzJXlgd1Q2a10qXEYsRl5cbTckJCIzUiFmJlsyJVFiQCZGLEZeXG03JCQiM2p3XSR6Iz5ZMmFGLEZeXG03JCQiM0J5ciR6ZVdaaCZGLEZeXG03JCQiM01DQU1leSkpR2VGLEZeXG03JCQiMyMqSEtVcV9RUWdGLEZeXG03JCQiMzhKeXcpeSUzVGlGLEZeXG03JCQiM1UveGNXIVtoWSdGLEZeXG03JCQiMzl5bCoqKlF4JG9tRixGXlxtNyQkIjNrKlJKN1ErVilvRixGXlxtNyQkIjMxXG52LihlKnpxRixGXlxtNyQkIjNZcUFUSVwnUUgoRixGXlxtNyQkIjMhXDEkZj5TOCZcKEYsRl5cbTckJCIzOmsqUTNAPWJxKEYsRl5cbTckJCIzJyo9NF43cz82ekYsRl5cbTckJCIzNTVwKlxgV2w3KUYsRl5cbTckJCIzMSh5KSoqcCpSUkwpRixGXlxtNyQkIjNnLlkyZDwuWSYpRixGXlxtNyQkIjM3KmZxcUpuanYpRixGXlxtNyQkIjNtNzI1X1FrXCopRixGXlxtNyQkIjMhRywiXHMwO3IiKkYsRl5cbTckJCIzcSI0R3p3KEdwJCpGLEZeXG03JCQiM3FNKikzI29LMGUqRixGXlxtNyQkIjM7ZVg9PjVzI3kqRixGXlxtNyRGLUZeXG1GW2BsLUZgYGw2JkZiYGxGZWBsRmNgbEZlYGwtJStBWEVTTEFCRUxTRzYnUSJ0NiJRIUZkZW0tJSVGT05URzYkJSpIRUxWRVRJQ0FHRmRgbCUrSE9SSVpPTlRBTEdGamVtLSUlVklFV0c2JDskISM1Rlx3RmNgbDskISQvIiEiIyQiJC8iRmRmbQ==support de la courbetotal:=[x(t),y(t),t=-infinity..infinity]: partiel:=[x(t),y(t),t=-1..1]:plot([total,partiel,EqTA,EqTB,EqTC,EqA],-0.6..0.6,-0.6..0.6,color=[blue,red,black,black,black,green],thickness=[1,2,2,2,2,2]);LSUlUExPVEc2Ki0lJ0NVUlZFU0c2JTdncDckJCIzUSQ+dzEzLilSWSEjQyQhM3BNRTotK2g2byEjQDckJCIzKVted2pCQGYmPSEjQiQhM2txV1cuP0tpOCEjPzckJCIzNXlBI3AhRyNlPCVGMyQhM1wzdlY8SVtWP0Y2NyQkIjNSZ2pAUmtvQnVGMyQhM0BRNjYwVmtDRkY2NyQkIjNpTidRN2pILm4iISNBJCEzcyo0KyF6bidwMyVGNjckJCIzUSZcSGgqXFpwSEZEJCEzJWUseTxRKkdcYUY2NyQkIjMzJUgpKiozOEsibydGRCQhM0EySSs5cyRSPClGNjckJCIza2g2KFFNInooPSJGLyQhMzlfayUzNmYpKjMiISM+NyQkIjMvZEdUUyhRRG4jRi8kITN1OEBWI3Akek07RlY3JCQiM19TZnQlXDM3diVGLyQhMy8hUVsoKSl6dHpARlY3JCQiMyVIK3dieF1ZeSpGLyQhMyJlbGc5XiE0R0pGVjckJCIzK0pvdFNPcmg7RjYkITNvYig+YkRdbDIlRlY3JCQiM01jTit0NEdjUUY2JCEzdnlxSUMmUjFAJ0ZWNyQkIjMhZkBoImZNaicpcEY2JCEzTVNNZicqei9oJClGVjckJCIzJUdwWVA9K0I1IkZWJCEza01LVV49Xl01ISM9NyQkIjMhNHlPMSdIMGY6RlYkITMhKVwqW2koUiQpXDdGZHA3JCQiM2krTFdWa047QEZWJCEzY0V4YXBYK2Q5RmRwNyQkIjMpW25KXyJSLSV5I0ZWJCEzRyQqM2pKOVNzO0ZkcDckJCIzT0NmSlkxTlZORlYkITNbcFtJRGJpKSk9RmRwNyQkIjNOQlpXWXExQ1dGViQhM1cyJj06TmxJNiNGZHA3JCQiMyN6I0gkenY2YkcmRlYkITNPcFFiRHInR0ojRmRwNyQkIjNTUlhIZDc6YWpGViQhMyU9JTNeVFZwU0RGZHA3JCQiMzd1XCopWyMqPmJ3RlYkITNTTEozZzhsJnojRmRwNyQkIjNUQTRZWCwmKVEkKkZWJCEzJ29nLyNbM20pNCRGZHA3JCQiM2Y/aUJXIjQ+OSJGZHAkITNVWF4yN3BoVU1GZHA3JCQiM2dfRWN0JClvKlwiRmRwJCEzX2gqcCcpcCNbISlSRmRwNyQkIjMjSGZhLnA2Vic+RmRwJCEzOSRlQShba204WUZkcDckJCIzQWxDJ3ohXDchKUdGZHAkITM4a0FrZHhIVGRGZHA3JCQiM3MyLTxPQEgpXCVGZHAkITN1ISlITzYicEBiKEZkcDckJCIzPHhcdlxqYEhpRmRwJCEzR2QsYkQ7IVJRKkZkcDckJCIzOXAmKmVbWSs6KCpGZHAkITNlekQiPmUtZUgiISM8NyQkIjMjUiJRZ1NxYC04RmV1JCEzXTReaCJHVC5qIkZldTckJCIzQXhgKFwlZlNdPkZldSQhM0UxR24nUUo1RyNGZXU3JCQiMzVWVm5URmojZSNGZXUkITMwRHlMcSZcViJIRmV1NyQkIjNAJmZKZllSayFRRmV1JCEzWWRxM2lZKipRVEZldTckJCIzWzV6bDM2ITQpXEZldSQhMzk4XTZTKnBQSiZGZXU3JCQiMyN5aiJwLXciZT4oRmV1JCEzJ2VxVFZfQipHdkZldTckJCIzb3U0KjNrOiZcIypGZXUkITMlUU96QycpNEZlKkZldTckJCIzUWlWLyI0NVNIIiEjOyQhMyEqKj08N0NPdEsiRlx4NyQkIjNtZ29IOyIqUV9ARlx4JCEzT1RJLkUpPmQ9I0ZceDckJCIzN3ojPTNoVCcqUSdGXHgkITNeRkdNVlkoSFUnRlx4NyQkITNVKjNLPFUhPmpnRlx4JCIzO3YmcGdVZClIZ0ZceDckJCEzJT1KKFEiKWUiZjAjRlx4JCIzVTErQDtiZUE/Rlx4NyQkITNMeT9LZDlrUDdGXHgkIjMpPUxsMVM7Vj8iRlx4NyQkITNtSmBrIlxXOCYpKUZldSQiM045ZzlmWTw9JilGZXU3JCQhM1MhW0tWRkZoaiZGZXUkIjNSayhwbFgwS0kmRmV1NyQkITMvSlprZSgqPUpURmV1JCIzIXoqSEk3d2opeiRGZXU3JCQhM3EuREB5IXltbyNGZXUkIjNJJ0dsMEdpX04jRmV1NyQkITNBVldvQW1iJCk+RmV1JCIzdWc6UjlZJ1FsIkZldTckJCEzLUZpMDdTdSdHIkZldSQiM2BCcFlfP3lEJypGZHA3JCQhMzduOT1NJkhuTCpGZHAkIjNFakpWYSFmVT0nRmRwNyQkITNbPy1baEhTJnomRmRwJCIzNi0uWz14R0VIRmRwNyQkITMlemlJdjshSEZPRmRwJCIzMy1KPlAnMzBFIkZkcDckJCEzTzUwUmorMCh5IkZkcCQiMztNbFBjdGl2SkZWNyQkITNdaiZcKipvT3UqeUY2JCIzZzVKNmJ2JXBCJ0ZENyQkIjM9cCIqKVJqK29uIkZkcCQiMzliQ18vdDVER0ZWNyQkIjN6JHA0OSNcdTdMRmRwJCIzJlEuXVIpelZVNkZkcDckJCIzWlcmemRBUlxWJUZkcCQiMydvJ0haWFtQNUFGZHA3JCQiM2gwWihHPHpbNSZGZHAkIjNwaWdqIT5xIUdMRmRwNyQkIjNjVTJgJVIiKSpSXUZkcCQiM1MleVRIKj5HZFxGZHA3JCQiMyVRSU1vSCNcelJGZHAkIjNld0tVLVhveF9GZHA3JCQiMyV6KCpRJkhEQ3VIRmRwJCIzU2pgYChRYjklXEZkcDckJCIzWSRvME5nUilbQUZkcCQiM0FAYUpuNGdsV0ZkcDckJCIzaz1zc1t1YidvIkZkcCQiMyEpKjR5a2opUWNSRmRwNyQkIjMhPlpSYEZ1S0wiRmRwJCIzZ0BlT1F1L2ZORmRwNyQkIjM5X0MjXG9POTEiRmRwJCIzcDg1XXBbNStLRmRwNyQkIjNvQSdvZ0BAMnopRlYkIjMtVT1pSlJcREhGZHA3JCQiMyEzOVdzPyNld3NGViQiM1FFQSY9WlIxbiNGZHA3JCQiMz1mclAoejl0PCdGViQiM1d0eGNCbDZtQ0ZkcDckJCIzaF9jSkYyIj0/JkZWJCIzJypcNEcqNCc0bkFGZHA3JCQiMzVpL1BTO2xCVkZWJCIzJVtkNShlJUcqcD9GZHA3JCQiM29PKjQicHIhcFskRlYkIjNxaiEpeSoqcEBoPUZkcDckJCIzbSQ9JCplVnlIdyNGViQiM0VndiI0byFSZTtGZHA3JCQiMzY7O1FYY2EyQEZWJCIzNXBra1ZHXlw5RmRwNyQkIjNQI1xaazlgT2EiRlYkIjNnJVIqb09fQ1Q3RmRwNyQkIjNaeUswdTUoPjUiRlYkIjNbJFFxRFNTIlw1RmRwNyQkIjMleVwiKVxsUWUnb0Y2JCIzcywjZT1reE9HKUZWNyQkIjMjb1QnKVxVIilwKFJGNiQiMzNEeS86LmEwakZWNyQkIjNrLzpdcSUpUmY8RjYkIjM9TGImKUdPTyU+JUZWNyQkIjNhb0BNPD5lODVGNiQiMyEqXFYmPXdHTz0kRlY3JCQiMyVHIipvJCkzbjRzJUYvJCIzRUs2Qzd2d3NARlY3JCQiMyFIZlpfdGZibCNGLyQiM15zPih6SCZlSDtGVjckJCIzUSsyU2xCRCE9IkYvJCIzQ21EKzJOUiczIkZWNyQkIjNBdlVxd1cjKlFtRkQkIjNDI3lsQ01kejkpRjY3JCQiMz14UyVSQU0xJkhGRCQiMycpPmNQSE8oPlYmRjY3JCQiM0E/KDRtK0soZjtGRCQiMzNfKkdYcyEpUjIlRjY3JCQiM3lEWlAlZidld3RGMyQiMydcJ2ZlJj4oKWZyI0Y2NyQkIjNPNyY+P0VJJFxURjMkIjNJZ0l5I1shKnAuI0Y2NyQkIjMyXFFVVGo5Vz1GMyQiMyM+NipmJ1wkKnpOIkY2NyQkIjNiK0JtamVPNVlGLCQiM0EhUnV5XG4qKnknRi83JEkqdW5kZWZpbmVkR0kqcHJvdGVjdGVkR0ZgaGxGX2hsLSUqVEhJQ0tORVNTRzYjIiIiLSUmQ09MT1JHNiYlJFJHQkckIiIhISIiRmlobCQiIzVGW2lsLUYmNiU3aXA3JCQhMyl6KyRRPzghb1cjISM6JCIzWEBZNiopellWQ0ZkaWw3JCQhMyIqb0tVI1EpUkI3RmRpbCQiM3QqKTRPZF0xPzdGZGlsNyQkITNhVjkncCZRJ2Y6KUZceCQiM1o3MykqNDJqQSIpRlx4NyQkITN6NF5HXWMlcDYnRlx4JCIzRycpeXBbRWgkMydGXHg3JCQhM0k1YVNeKEdOKltGXHgkIjNfP044UGY+Z1tGXHg3JCQhMyU0IVszZ0UiejIlRlx4JCIzVjo5QXYrZVdTRlx4NyQkITNLXktBIkdEYFwkRlx4JCIzXWZOLm9IKj5ZJEZceDckJCEzIVtTSilSM1FlSUZceCQiM2l4SnZTKVtdLSRGXHg3JCQhM1t0Jj0qejtgPUZGXHgkIjNLInppdi4rX28jRlx4NyQkITNhKXo9az9cbVcjRlx4JCIzaCFHcU4neko4Q0ZceDckJCEzVjRaISpScT5DQUZceCQiMydbdUEmUmknMz4jRlx4NyQkITMxQmdJSnYiKVE/Rlx4JCIzMSE+RGxAKFswP0ZceDckJCEzLTImZikzYiY+KT1GXHgkIjNDcCoqKUhzRCdbPUZceDckJCEzL1MkNHk2K3Z1IkZceCQiM0U/dUwvNDw5PEZceDckJCEzKlJSZFAoKnA0aiJGXHgkIjNJPG1NdzhrKGYiRlx4NyQkITNQQSRcXTMvIUg6Rlx4JCIzN3QzYVpobiZcIkZceDckJCEzaUUvXSJHSyFSOUZceCQiM0Qjejh6LzBkUyJGXHg3JCQhM2VvSHlUYjBmOEZceCQiMz0nZTtqMEhkSyJGXHg3JCQhM2VjcDUicCZcKEciRlx4JCIzRWgpUSIpKipwVEQiRlx4NyQkITNING84biw0QjdGXHgkIjMhNGdEN0psKCo9IkZceDckJCEzW0U4UFNwIls7IkZceCQiM0ZDaURtSFxKNkZceDckJCEzVHN2dispUj02IkZceCQiM2svIWZMdjsmeTVGXHg3JCQhMzszRS9IellqNUZceCQiMz1MTllgZTlJNUZceDckJCEzJXpwKT5oYzc+NUZceCQiM2EjW1xzLVkhZSkqRmV1NyQkITNjcilcVFIlSCR5KkZldSQiMy04JGZeViU0XSUqRmV1NyQkITMkKipSXE8qNHExJSpGZXUkIjM/bjklcDY3TjIqRmV1NyQkITNzYEFPTzQqejAqRmV1JCIzOyVIQC5nOFtzKUZldTckJCEzXSRRQCNlbDxNKClGZXUkIjNhJ2UiNEI3LCwlKUZldTckJCEzIXlSIls6RG9LJSlGZXUkIjNPYFtPVidIJio0KUZldTckJCEzSSU+VyJHb0ZeIilGZXUkIjNrYXArJClvOD15RmV1NyQkITNPamoyOWAsKSl5RmV1JCIzJ1tdazx3KSlbYihGZXU3JCQhM0FEcE5obz5Ud0ZldSQiM2pSPmdwVDMzdEZldTckJCEzNUh4KFI+V2xDKEZldSQiM1swISoqSHVjTSJwRmV1NyQkITMjKSl5N2pgdTAqb0ZldSQiM1dpXUNlUF5kbEZldTckJCEzIT5CVFcvaXljJ0ZldSQiM1hmTVsiUUhbQidGZXU3JCQhM2MxKWZfQF1SRidGZXUkIjN4Ujp1PnIlNCVmRmV1NyQkITMtUSpwYTJkJGVkRmV1JCIzSlAtbTd2VERhRmV1NyQkITMkcGliKW9DIzNLJkZldSQiM3NtKkg3UF96KVxGZXU3JCQhM0w2RCd5T1pbJVxGZXUkIjNKbERFXkYwN1lGZXU3JCQhMy88IzMxPncjPVlGZXUkIjNzQ0BIYkpjJkclRmV1NyQkITNgUWEzQGUmPkwlRmV1JCIzWTg1eF8wTCoqUkZldTckJCEzcTw6PEZDJyl5U0ZldSQiMylScDgiKT5KanUkRmV1NyQkITNaL1hIdHZaL09GZXUkIjNjLnh3Szc9c0tGZXU3JCQhMzQhPiZ6InBVIkdLRmV1JCIzQUspKVFMVzYnKkdGZXU3JCQhM0oyYCNRKVxAQUhGZXUkIjM/KipSS1ohKlshZiNGZXU3JCQhM1UnKjNMQm9hb0VGZXUkIjM7JEdrVV9lckwjRmV1NyQkITMjUSEpM0JZYChwQUZldSQiMyU0Q3RSYmMiUj5GZXU3JCQhM0NLZEQ8YVtzPkZldSQiM1QsLy1tcCRHayJGZXU3JCQhM28kM1dLSiopSHUiRmV1JCIzSyJSTHloXVdUIkZldTckJCEzUzEmPilbMVJmOkZldSQiM3kpZjg+XFBAQiJGZXU3JCQhM0xPZ0FnRTsrOEZldSQiMykpcC02cSlmenYqRmRwNyQkITM0JXAjNFJibC42RmV1JCIzWyQqcCtMI1wuJHlGZHA3JCQhMzcrTmJnYFYnWypGZHAkIjNicyY0Jnl0L0dqRmRwNyQkITN5UCo9dllIRkUpRmRwJCIzJSkqKXp5Yi5JaV5GZHA3JCQhMylSQCVIV2Y+THNGZHAkIjM9J3ooPityUy9VRmRwNyQkITMzaio+YyEzNGtrRmRwJCIzVFA3I3A3Zyc0TkZkcDckJCEzJT4qeUZyTT02ZEZkcCQiM0l4Q2JSaV1hR0ZkcDckJCEzOkxpbVxXJ1svJkZkcCQiMzdCVV1YIWVISSNGZHA3JCQhM3UkUVN5I3A9bVdGZHAkIjN1ZztQJD1wQiY9RmRwNyQkITNjaUo5PVxkIilSRmRwJCIzZXhrQjY9WCs6RmRwNyQkITN2YndSIlI7TlckRmRwJCIzXD9hZW9hWlU2RmRwNyQkITNkXHAvbillQCwkRmRwJCIzRyw7VyF6KltWKSlGVjckJCEzW0o/XClRSjRgI0ZkcCQiM01POyQ9azVsSSdGVjckJCEzKVIjUVtqIyo+PUBGZHAkIjM9OUAyXXpIWFdGVjckJCEzKyc+SSRRRy52O0ZkcCQiMyNmJ2VLI1JKRnojRlY3JCQhMydmXygpemg9IWY3RmRwJCIzJ2VtKTRBSyk+ZSJGVjckJCEzKXl0XWEiKXlURylGViQiMylRZjlIJ28nKWVvRjY3JCQhM3N6dVFsSz5XVkZWJCIzITQneixKby8oKT1GNjckJCEzc1VwXDQ1enIpKkYvJCIzdSJHVlR3RF91KkYsNyQkIjM7YCNcLHJBL0olRlYkIjNpbiVRJkdLN2U9RjY3JCQiM2RTcyRmW0lbOSlGViQiM15VIVxkYDt1aidGNjckJCIzKEhLdEVMM3NBIkZkcCQiMz9DTjNVJFIpMzpGVjckJCIzJSl5QyUqUXNEXTtGZHAkIjN2TXpZXGp2TkZGVjckJCIzKSpcIjN1IVJMZT9GZHAkIjNxJSpcISkqPihvdVVGVjckJCIzKSoqUXNsUCJ5V0NGZHAkIjNJJClHeTg+T29nRlY3JCQiM0VzKHpmWiM9Z0dGZHAkIjMjKXosU2k9IXBRKUZWNyQkIjM4JypcTXoyQjxLRmRwJCIzT0JxIlwsNk4yIkZkcDckJCIzRyp6blVWVHJkJEZkcCQiM2FxUD8qeSIzWzhGZHA3JCQiM3FEKD5QKnBjISlRRmRwJCIzalBTIWYiUUc5O0ZkcDckJCIzczdXJnlSXVA9JUZkcCQiM2cxJz0mZTtSPj5GZHA3JCQiMyp5KCp6PCtvJ1FXRmRwJCIzKTRtMURJOV1AI0ZkcDckJCIzPSZvJHBCRityWUZkcCQiMzpxOiI0ZSdcRkRGZHA3JCQiM1c8JypmPXRoaVtGZHAkIjMxOWNaPnRASkdGZHA3JCQiM11yOnp6IW9YLSZGZHAkIjMoeilwNHByIT45JEZkcDckJCIzNikqPiJROV5KOSZGZHAkIjMjcDB5KUc5UkhNRmRwNyQkIjNgU0AjKWUsUkZfRmRwJCIzK2g6eipIKUgyUEZkcDckJCIzKT5jUlNZJXB2X0ZkcCQiM01JKkcoXCMqW2pSRmRwNyQkIjNPbG03cXBAIkgmRmRwJCIzbSNHOkleJW96VEZkcDckJCIzN2loZGInPSF5X0ZkcCQiMygqUkZ4Z0U0LldGZHA3JCQiMyV6K0dreFw2QyZGZHAkIjM5d2VgPSQ9K2UlRmRwNyQkIjM7LFlPVHI3el5GZHAkIjNJMiJ6XEFLWXUlRmRwNyQkIjNNNFUoWzMjKTQ1JkZkcCQiM19nVSp6JVtKeltGZHA3JCQiMysrKysrKysrXUZkcEZfZm4tRmJobDYjIiIjLUZmaGw2JkZoaGxGXGlsRmlobEZpaGwtRiY2JTdTNyQkITItKysrISoqKioqKioqIiQiSCRGamhsRmpobDckJCEzR1opSDwnW3YoZSVGXHhGXWduNyQkITMrVkI8czFBYENGXHhGXWduNyQkITNYaUpYd2NfNTtGXHhGXWduNyQkITMzTT93czBzJz4iRlx4Rl1nbjckJCEzdExYdTMleixgKkZldUZdZ243JCQhM3FvLTJpSGk7ISlGZXVGXWduNyQkITNHXywnSDsmXCUpb0ZldUZdZ243JCQhM2RsIVJ6V1ByKydGZXVGXWduNyQkITMlSEpoRFNiK0wmRmV1Rl1nbjckJCEzSydcIjRdZkh3WkZldUZdZ243JCQhM1E/aEtHQSdlUCVGZXVGXWduNyQkITNJKysrIVt6JSkqUkZldUZdZ243JCQhMzUrKysrVSc+bCRGZXVGXWduNyQkITMvKysrP0QuPUxGZXVGXWduNyQkITNTTExMajB6OUlGZXVGXWduNyQkITMhcG1tbWExVWwjRmV1Rl1nbjckJCEzPW5tbSdlVyhbQkZldUZdZ243JCQhM1MrKys1KD5NKj5GZXVGXWduNyQkITNVbm1tJylwKil5O0ZldUZdZ243JCQhM2wqKioqKio0ZCJRTCJGZXVGXWduNyQkITMqKSoqKioqKkhuQDA1RmV1Rl1nbjckJCEzcWttbW07ZUJtRmRwRl1nbjckJCEzV25tbW0ocF1aJEZkcEZdZ243JCQhMz8iW0xMTEx1KnlGNkZdZ243JCQiM2NgbW1tVmhbTUZkcEZdZ243JCQiM3giKioqKioqcCFSPmxGZHBGXWduNyQkIjNBZW1tbUsiZiQpKkZkcEZdZ243JCQiM1cqKioqKipmMEFFOEZldUZdZ243JCQiM00pKioqKio+a1RoO0ZldUZdZ243JCQiM3UpKioqKipcY3QmKT5GZXVGXWduNyQkIjNlKSoqKioqZm8kZU0jRmV1Rl1nbjckJCIzP0tMTDhRU3BFRmV1Rl1nbjckJCIzcCoqKioqKipmISlbLCRGZXVGXWduNyQkIjMlZm1tbSJSJHpLJEZldUZdZ243JCQiM3MqKioqKip6UT1xT0ZldUZdZ243JCQiM21KTExCV0AjKlJGZXVGXWduNyQkIjMhUWJHaGMjR2VWRmV1Rl1nbjckJCIzeW0iXFhHYXV5JUZldUZdZ243JCQiMyhbaGUnKUdJeEwmRmV1Rl1nbjckJCIzSXMheV5uJT0tZ0ZldUZdZ243JCQiM1tsRTcnSEh4KG9GZXVGXWduNyQkIjNGQytzYSVmNC8pRmV1Rl1nbjckJCIzLGFrbUwtZT8mKkZldUZdZ243JCQiM3EtQFozal0xN0ZceEZdZ243JCQiM3dvKCk0QiI0YmUiRlx4Rl1nbjckJCIzRzMhKm9dZihSUSNGXHhGXWduNyQkIjNVdkJVJil6UC1ZRlx4Rl1nbjckJCIyLSsrKyEqKioqKioqKkZcZ25GXWduRmFmbi1GZmhsNiZGaGhsRmlobEZpaGxGaWhsLUYmNiU3YW83JCQiM10oKlIqKVJvTCJIJkZkcCQhM3NIMSlweU84SCYiJCFINyRGZGBvJCEzS3ZaNCRHOVJ3KEZkaWw3JEZkYG8kITNFJyozOHRzJil6UUZkaWw3JEZkYG8kITN3T0g5Ljs8JmUjRmRpbDckRmRgbyQhM3RjKlsibyhHeSQ+RmRpbDckRmRgbyQhMydwKFw6TGZbIUgiRmRpbDckRmRgbyQhMzdxKHpsOlgibycqRlx4NyRGZGBvJCEzSyIpKTQ7KTRWSmtGXHg3JEZkYG8kITMtclw3JSpRMjhbRlx4NyRGZGBvJCEzRUUrazFvciU+JEZceDckRmRgbyQhM1FrdipHRVFiUSNGXHg3JEZkYG8kITMpMyFcLC4kNCdcO0ZceDckRmRgbyQhM0N1Y2RCVjNjN0ZceDckRmRgbyQhMzBHTjZnLCc9NSlGZXU3JEZkYG8kITMlXF07Lyh6RjdmRmV1NyRGZGBvJCEzakIxTGNfd0FZRmV1NyRGZGBvJCEzWGtmeGQ6Kj0jUUZldTckRmRgbyQhM188Z28vWSVHQSRGZXU3JEZkYG8kITMheVFnWjMwJ2VGRmV1NyRGZGBvJCEzIyl6bHNuIlEuUyNGZXU3JEZkYG8kITNbc3NmKVFEdDUjRmV1NyRGZGBvJCEzLXRmPz1DVyYqPUZldTckRmRgbyQhM2tHLEolXGNkcCJGZXU3JEZkYG8kITMyNV5rKGUuQ14iRmV1NyRGZGBvJCEzd1NmZygzNGRMIkZldTckRmRgbyQhM11gWiRSYmBfPCJGZXU3JEZkYG8kITNSXEEzW1NjVykqRmRwNyRGZGBvJCEzM0UhW2YjPkVHIylGZHA3JEZkYG8kITNFLTQiZko9IltqRmRwNyRGZGBvJCEzdVpNJkhrc1FvJUZkcDckRmRgbyQhMy9kJXA0UEp6JkdGZHA3JEZkYG8kITNFbVFhI1suIz42RmRwNyRGZGBvJCIzPSwkXFxrbShccEZWNyRGZGBvJCIzdSNSRV9PZzRPI0ZkcDckRmRgbyQiMytPYy9gKVt6OiVGZHA3JEZkYG8kIjNvMmdaZFteQ2dGZHA3JEZkYG8kIjNbUSxXXmdPXHdGZHA3JEZkYG8kIjNMXlc8YilcVVMqRmRwNyRGZGBvJCIzXHZOKlJsQDw3IkZldTckRmRgbyQiMztxTER1XTMqSCJGZXU3JEZkYG8kIjNrdj1ALkxwcTlGZXU3JEZkYG8kIjMvOyNvSSlcQmg7RmV1NyRGZGBvJCIzOzRGNWReV0s9RmV1NyRGZGBvJCIzNmpXJz5jW18sI0ZldTckRmRgbyQiMyVlUihwO2MqMz0jRmV1NyRGZGBvJCIzMSs3ays7Kj5PI0ZldTckRmRgbyQiM2x0QVIzKSlRS0RGZXU3JEZkYG8kIjNgbjFRJHooM0VGRmV1NyRGZGBvJCIzV0ZFImUreEomSEZldTckRmRgbyQiM0VFIXldZFlWQyRGZXU3JEZkYG8kIjMlRykqZkN4SmZmJEZldTckRmRgbyQiM08pXFBLIz5AZlNGZXU3JEZkYG8kIjM3JHAkUSM9O1puJUZldTckRmRgbyQiM3UjKVswd0xqZGFGZXU3JEZkYG8kIjNIUzcpMydcKy9vRmV1NyRGZGBvJCIzaU0pUWpeTyU0KSlGZXU3JEZkYG8kIjNhTittWCRSTUkiRlx4NyRGZGBvJCIzIXopPj9WJiopUnEiRlx4NyRGZGBvJCIzcSMzb29lcXNaI0ZceDckRmRgbyQiM2FMM1FFJEchKkckRlx4NyRGZGBvJCIzImZMMWEhUWE3XEZceDckRmRgbyQiMyoqUT1WJUdmZ2AnRlx4NyRGZGBvJCIzdVZHW1UtNCR5KkZceDckRmRgbyQiM0IkUmArNzdJSSJGZGlsNyRGZGBvJCIzbSZlajtKPUMmPkZkaWw3JEZkYG8kIjM8TFBGLlgjPWcjRmRpbDckRmRgbyQiMyMqM1RcJylvaitSRmRpbDckRmRgbyQiMy1OXzpPUzIoeihGZGlsNyRGZGBvJCIzc0gxKXB5TzhIJkZoYG9GYWZuRl5gby1GJjYlN2FvNyQkIjMtKysrdioqKioqXCNGaGBvJCEzLSsrK3YqKioqKlwjRmhgbzckJCIzK0RSUSopUT92T0ZkaWwkITMrRFJRKilRP2xPRmRpbDckJCIzXWk+cFc+NVM9RmRpbCQhM11pPnBXPjVJPUZkaWw3JCQiM0wzOFknSCwlRzdGZGlsJCEzTDM4WSdILCU9N0ZkaWw3JCQiM143KWZNczRiQSpGXHgkITNeNylmTXM0YjcqRlx4NyQkIjNvVGxJI1sxcTsnRlx4JCEzb1RsSSNbMXExJ0ZceDckJCIzT2YpSDwnW3ZQWUZceCQhM09mKUg8J1t2UFhGXHg3JCQiM0ZISzpUS10zSkZceCQhM0ZISzpUS10zSUZceDckJCIzb0hcJzNWeFFNI0ZceCQhM29IXCczVnhRQyNGXHg3JCQiM2s5bWQ/O0R6OkZceCQhM2s5bWQ/O0R6OUZceDckJCIzIz1ZS2FyUXA+IkZceCQhMyM9WUthclFwNCJGXHg3JCQiM1NUbzgrMk0jXClGZXUkITNTVG84KzJNI1woRmV1NyQkIjNaZDNWIW9eSWonRmV1JCEzWmQzViFvXklqJkZldTckJCIzNzFIOCI+OWpfJUZldSQhMzcxSDgiPjlqXyRGZXU3JCQiMz0mMzA+Viw9XCRGZXUkITM9JjMwPlYsPVwjRmV1NyQkIjNVTGg9X1thIylHRmV1JCEzVUxoPV9bYSMpPUZldTckJCIzPG52XlNkOi9ERmV1JCEzPG52XlNkOi86RmV1NyQkIjNIUSt1IXpCNkEjRmV1JCEzMlErdSF6QjZBIkZldTckJCIzUm1aKT5PJXksP0ZldSQhM1JtWik+TyV5LDVGZXU3JCQiM0JHLmtdUV5LPUZldSQhM04jRy5rXVFeSylGZHA3JCQiMzF1R18oKVIyJXAiRmV1JCEzIjN1R18oKVIyJXBGZHA3JCQiMzNJOjNkYidSZiJGZXUkITMkNEk6M2RiJ1JmRmRwNyQkIjMzKysrcSk+JypcIkZldSQhM3crKysrKCk+JypcRmRwNyQkIjMuKysrXTUqSFQiRmV1JCEzRSsrKyswIipIVEZkcDckJCIzLCsrK0kiMyZIOEZldSQhMzUrKysrODMmSCRGZHA3JCQiM09MTCQzayhwYDdGZXUkITNcTExMM2socGAjRmRwNyQkIjNzbW1tTztiajZGZXUkITNBbm1tbWpeTjtGZHA3JCQiMyFvbW1tOSc9KDMiRmV1JCEzdHptbW1ZaD0oKUZWNyQkIjMrLCsrdiNcTikqKkZkcCQiMy0rKioqKipcc11rIkY2NyQkIjNjb21tbUNDKD4qRmRwJCIzVTlMTExgZEYhKUZWNyQkIjM5KioqKipcRlJYTClGZHAkIjMnMysrXXNnYW0iRmRwNyQkIjN0KioqKipcIz0vOHZGZHAkIjNHKysrdiJlcFsjRmRwNyQkIjM9bW1tO2EqZWwnRmRwJCIzI1FMTExlL1RNJEZkcDckJCIzJ29tbTtXbihvZUZkcCQiMzlMTExlREJKVEZkcDckJCIzcUxMTCRlVig+XUZkcCQiM0ltbW07a0QhKVxGZHA3JCQiM2hPTEwzayV5OCVGZHAkIjNRam1tImZgQCdlRmRwNyQkIjMxLSsrREI6cUxGZHAkIjMleioqKipcblopSG1GZHA3JCQiM1hOTEwkb0A1YSNGZHAkIjNja21tOyR5KmV1RmRwNyQkIjNTLCsrKydbV28iRmRwJCIzZikqKioqKipSXmJKKUZkcDckJCIzX1QrKysmKmVrJSlGViQiMydlKioqKipcNWFgIipGZHA3JCQiM105LisrdjNtTkY2JCIzJ28qKioqXDdSVicqKkZkcDckJCEzX2sqKioqKlxAZmspRlYkIjNrKioqKipcQGZrMyJGZXU3JCQhM19JTExMJjRObiJGZHAkIjMvTExMYDRObjZGZXU3JCQhM0EqKioqKioqXCxzYCNGZHAkIjMjKioqKioqKlwsc2A3RmV1NyQkITMlW21tO3pNKT5MRmRwJCIzW21tO3pNKT5MIkZldTckJCEzTSoqKioqKipwZmE8JUZkcCQiMyQqKioqKioqcGZhPDlGZXU3JCQhMzlITExlZ2AhKVxGZHAkIjMjSExMZWdgISlcIkZldTckJCEzXSVRQGBUMWQqZUZkcCQiM1dRQGBUMWQqZSJGZXU3JCQhMyVwIkhQNmRqb3BGZHAkIjNvIkhQNmRqb3AiRmV1NyQkITM+UGxrQGRLVyQpRmRwJCIzc2BZO3NEVk09RmV1NyQkITMzPVh6b2hhKzVGZXUkIjMmeV4lem9oYSs/RmV1NyQkITNQbTEuQ0JWPjdGZXUkIjNmbTEuQ0JWPkFGZXU3JCQhMzIxK29qKVItXiJGZXUkIjMyMStvailSLV4jRmV1NyQkITNdOG1UZV05ISk9RmV1JCIzXThtVGVdOSEpR0ZldTckJCEzdWMtPXJkRTtERmV1JCIzdWMtPXJkRTtORmV1NyQkITMpPSNwdTJHeGpNRmV1JCIzS0FwdTJHeGpXRmV1NyQkITNvP0RzdylSKmZhRmV1JCIzbz9Ec3cpUipma0ZldTckJCEzT3p1MHM0VV90RmV1JCIzQyFbZD8oNFVfJClGZXU3JCQhMyZRZmJqXCVmKzZGXHgkIjMmUWZialwlZis3Rlx4NyQkITNxInpTXipmNyVbIkZceCQiM3EielNeKmY3JWUiRlx4NyQkITNzKD02RioqKT1eQUZceCQiM3MoPTZGKiopPV5CRlx4NyQkITNRJGUiRyEqPkQ9SUZceCQiM1EkZSJHISo+RD1KRlx4NyQkITNVdkJVJil6UF9YRlx4JCIzVXZCVSYpelBfWUZceDckJCEzbzNLYyEpUl0nMydGXHgkIjNvM0tjISlSXSc9J0ZceDckJCEzJTN2VzMoZnZhIipGXHgkIjMlM3ZXMyhmdmEjKkZceDckJCEzTTNFNid6K0JBIkZkaWwkIjNNM0U2J3orQkIiRmRpbDckJCEzUDcqb1Q+XmYkPUZkaWwkIjNPNypvVD5eZiU9RmRpbDckJCEzdUN5TClRLXBuJEZkaWwkIjN1Q3lMKVEtcG8kRmRpbDckRltecEZpXXBGYWZuRl5gby1GJjYlN1M3JEZqZm5GXGBvNyRGX2duJCIzczhsUkc6VWFYRlx4NyRGYmduJCIzeDQhUilRdCkpPkNGXHg3JEZlZ24kIjMxSCk+Sk0jPng6Rlx4NyRGaGduJCIzbysoRyVSc1FqNkZceDckRltobiQiMyEpKj42YTJZbz4qRmV1NyRGXmhuJCIzbU5wdEcnKkckbyhGZXU3JEZhaG4kIjNFPm9pSD07XmxGZXU3JEZkaG4kIjNfS2RnOVQhUW4mRmV1NyRGZ2huJCIzISp6ekFwP3MnKlxGZXU3JEZqaG4kIjNHaiJlbmhpSFclRmV1NyRGXWluJCIzTSh5IypcKilHRC8lRmV1NyRGYGluJCIzI29tbW05WV5tJEZldTckRmNpbiQiM2ltbW1tM2o9TEZldTckRmZpbiQiM2NtbW0nPSpwJSlIRmV1NyRGaWluJCIzISoqKioqKipIc1gibyNGZXU3JEZcam4kIjNUTExMOEsoM0sjRmV1NyRGX2puJCIzckxMTGA3VDo/RmV1NyRGYmpuJCIzOW5tbXdqM2c7RmV1NyRGZWpuJCIzO01MTGBPY1g4RmV1NyRGaGpuJCIzU21tbXdCWys1RmV1NyRGW1tvJCIzS21tbW1SJCk9bkZkcDckRl5bbyQiM2NKTExMJFstSCRGZHA3JEZhW28kIjMrVkxMTFZPPDlGVjckRmRbbyQhM00pKioqKioqKiplVkQkRmRwNyRGZ1tvJCEzOScpKioqKipwWj55J0ZkcDckRmpbbyQhM09DTExMU3NfKSpGZHA3JEZdXG8kITMzKioqKioqZlkjcEoiRmV1NyRGYFxvJCEzcUtMTCQqUWJmO0ZldTckRmNcbyQhM2dKTExgKFxaKj5GZXU3JEZmXG8kITNBS0xMJCkqbyE+QkZldTckRmlcbyQhMzFLTEwkPnEiekVGZXU3JEZcXW8kITNwbG1tWXJ0LUlGZXU3JEZfXW8kITM7TExMTFJAW0xGZXU3JEZiXW8kITNVKioqKioqXHNFaE9GZXU3JEZlXW8kITN4S0xMOHNeLlNGZXU3JEZoXW8kITNwa21tY3hhRFZGZXU3JEZbXm8kITMjbyk9WSoqZWgicCVGZXU3JEZeXm8kITMiKSpcIyl5aCh5P15GZXU3JEZhXm8kITMheiU+Kj5pajVuJkZldTckRmRebyQhM00wOV4zIT1iTCdGZXU3JEZnXm8kITNfKSpmWEhFMTZzRmV1NyRGal5vJCEzP2VMMCl5I0h1JClGZXU3JEZdX28kITMlenkqKnBjOFImKSpGZXU3JEZgX28kITM0T2EhPWtSKVI3Rlx4NyRGY19vJCEzOS1AVmNDJSk9O0ZceDckRmZfbyQhM1xUQi0lRzR0VCNGXHg3JEZpX28kITMqKjNkdj04ck5ZRlx4NyRGXGBvRmpmbkZhZm4tRmZobDYmRmhobEZpaGxGXGlsRmlobC0lK0FYRVNMQUJFTFNHNiRRITYiRmRcci0lJVZJRVdHNiQ7JCEiJ0ZbaWwkIjEtKysrKysrZ0ZceEZpXHI=plot(total,-0.5..0.5,-0.5..0.5,axes=none);LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdncDckJCIzUSQ+dzEzLilSWSEjQyQhM3BNRTotK2g2byEjQDckJCIzKVted2pCQGYmPSEjQiQhM2txV1cuP0tpOCEjPzckJCIzNXlBI3AhRyNlPCVGMyQhM1wzdlY8SVtWP0Y2NyQkIjNSZ2pAUmtvQnVGMyQhM0BRNjYwVmtDRkY2NyQkIjNpTidRN2pILm4iISNBJCEzcyo0KyF6bidwMyVGNjckJCIzUSZcSGgqXFpwSEZEJCEzJWUseTxRKkdcYUY2NyQkIjMzJUgpKiozOEsibydGRCQhM0EySSs5cyRSPClGNjckJCIza2g2KFFNInooPSJGLyQhMzlfayUzNmYpKjMiISM+NyQkIjMvZEdUUyhRRG4jRi8kITN1OEBWI3Akek07RlY3JCQiM19TZnQlXDM3diVGLyQhMy8hUVsoKSl6dHpARlY3JCQiMyVIK3dieF1ZeSpGLyQhMyJlbGc5XiE0R0pGVjckJCIzK0pvdFNPcmg7RjYkITNvYig+YkRdbDIlRlY3JCQiM01jTit0NEdjUUY2JCEzdnlxSUMmUjFAJ0ZWNyQkIjMhZkBoImZNaicpcEY2JCEzTVNNZicqei9oJClGVjckJCIzJUdwWVA9K0I1IkZWJCEza01LVV49Xl01ISM9NyQkIjMhNHlPMSdIMGY6RlYkITMhKVwqW2koUiQpXDdGZHA3JCQiM2krTFdWa047QEZWJCEzY0V4YXBYK2Q5RmRwNyQkIjMpW25KXyJSLSV5I0ZWJCEzRyQqM2pKOVNzO0ZkcDckJCIzT0NmSlkxTlZORlYkITNbcFtJRGJpKSk9RmRwNyQkIjNOQlpXWXExQ1dGViQhM1cyJj06TmxJNiNGZHA3JCQiMyN6I0gkenY2YkcmRlYkITNPcFFiRHInR0ojRmRwNyQkIjNTUlhIZDc6YWpGViQhMyU9JTNeVFZwU0RGZHA3JCQiMzd1XCopWyMqPmJ3RlYkITNTTEozZzhsJnojRmRwNyQkIjNUQTRZWCwmKVEkKkZWJCEzJ29nLyNbM20pNCRGZHA3JCQiM2Y/aUJXIjQ+OSJGZHAkITNVWF4yN3BoVU1GZHA3JCQiM2dfRWN0JClvKlwiRmRwJCEzX2gqcCcpcCNbISlSRmRwNyQkIjMjSGZhLnA2Vic+RmRwJCEzOSRlQShba204WUZkcDckJCIzQWxDJ3ohXDchKUdGZHAkITM4a0FrZHhIVGRGZHA3JCQiM3MyLTxPQEgpXCVGZHAkITN1ISlITzYicEBiKEZkcDckJCIzPHhcdlxqYEhpRmRwJCEzR2QsYkQ7IVJRKkZkcDckJCIzOXAmKmVbWSs6KCpGZHAkITNlekQiPmUtZUgiISM8NyQkIjMjUiJRZ1NxYC04RmV1JCEzXTReaCJHVC5qIkZldTckJCIzQXhgKFwlZlNdPkZldSQhM0UxR24nUUo1RyNGZXU3JCQiMzVWVm5URmojZSNGZXUkITMwRHlMcSZcViJIRmV1NyQkIjNAJmZKZllSayFRRmV1JCEzWWRxM2lZKipRVEZldTckJCIzWzV6bDM2ITQpXEZldSQhMzk4XTZTKnBQSiZGZXU3JCQiMyN5aiJwLXciZT4oRmV1JCEzJ2VxVFZfQipHdkZldTckJCIzb3U0KjNrOiZcIypGZXUkITMlUU96QycpNEZlKkZldTckJCIzUWlWLyI0NVNIIiEjOyQhMyEqKj08N0NPdEsiRlx4NyQkIjNtZ29IOyIqUV9ARlx4JCEzT1RJLkUpPmQ9I0ZceDckJCIzN3ojPTNoVCcqUSdGXHgkITNeRkdNVlkoSFUnRlx4NyQkITNVKjNLPFUhPmpnRlx4JCIzO3YmcGdVZClIZ0ZceDckJCEzJT1KKFEiKWUiZjAjRlx4JCIzVTErQDtiZUE/Rlx4NyQkITNMeT9LZDlrUDdGXHgkIjMpPUxsMVM7Vj8iRlx4NyQkITNtSmBrIlxXOCYpKUZldSQiM045ZzlmWTw9JilGZXU3JCQhM1MhW0tWRkZoaiZGZXUkIjNSayhwbFgwS0kmRmV1NyQkITMvSlprZSgqPUpURmV1JCIzIXoqSEk3d2opeiRGZXU3JCQhM3EuREB5IXltbyNGZXUkIjNJJ0dsMEdpX04jRmV1NyQkITNBVldvQW1iJCk+RmV1JCIzdWc6UjlZJ1FsIkZldTckJCEzLUZpMDdTdSdHIkZldSQiM2BCcFlfP3lEJypGZHA3JCQhMzduOT1NJkhuTCpGZHAkIjNFakpWYSFmVT0nRmRwNyQkITNbPy1baEhTJnomRmRwJCIzNi0uWz14R0VIRmRwNyQkITMlemlJdjshSEZPRmRwJCIzMy1KPlAnMzBFIkZkcDckJCEzTzUwUmorMCh5IkZkcCQiMztNbFBjdGl2SkZWNyQkITNdaiZcKipvT3UqeUY2JCIzZzVKNmJ2JXBCJ0ZENyQkIjM9cCIqKVJqK29uIkZkcCQiMzliQ18vdDVER0ZWNyQkIjN6JHA0OSNcdTdMRmRwJCIzJlEuXVIpelZVNkZkcDckJCIzWlcmemRBUlxWJUZkcCQiMydvJ0haWFtQNUFGZHA3JCQiM2gwWihHPHpbNSZGZHAkIjNwaWdqIT5xIUdMRmRwNyQkIjNjVTJgJVIiKSpSXUZkcCQiM1MleVRIKj5HZFxGZHA3JCQiMyVRSU1vSCNcelJGZHAkIjNld0tVLVhveF9GZHA3JCQiMyV6KCpRJkhEQ3VIRmRwJCIzU2pgYChRYjklXEZkcDckJCIzWSRvME5nUilbQUZkcCQiM0FAYUpuNGdsV0ZkcDckJCIzaz1zc1t1YidvIkZkcCQiMyEpKjR5a2opUWNSRmRwNyQkIjMhPlpSYEZ1S0wiRmRwJCIzZ0BlT1F1L2ZORmRwNyQkIjM5X0MjXG9POTEiRmRwJCIzcDg1XXBbNStLRmRwNyQkIjNvQSdvZ0BAMnopRlYkIjMtVT1pSlJcREhGZHA3JCQiMyEzOVdzPyNld3NGViQiM1FFQSY9WlIxbiNGZHA3JCQiMz1mclAoejl0PCdGViQiM1d0eGNCbDZtQ0ZkcDckJCIzaF9jSkYyIj0/JkZWJCIzJypcNEcqNCc0bkFGZHA3JCQiMzVpL1BTO2xCVkZWJCIzJVtkNShlJUcqcD9GZHA3JCQiM29PKjQicHIhcFskRlYkIjNxaiEpeSoqcEBoPUZkcDckJCIzbSQ9JCplVnlIdyNGViQiM0VndiI0byFSZTtGZHA3JCQiMzY7O1FYY2EyQEZWJCIzNXBra1ZHXlw5RmRwNyQkIjNQI1xaazlgT2EiRlYkIjNnJVIqb09fQ1Q3RmRwNyQkIjNaeUswdTUoPjUiRlYkIjNbJFFxRFNTIlw1RmRwNyQkIjMleVwiKVxsUWUnb0Y2JCIzcywjZT1reE9HKUZWNyQkIjMjb1QnKVxVIilwKFJGNiQiMzNEeS86LmEwakZWNyQkIjNrLzpdcSUpUmY8RjYkIjM9TGImKUdPTyU+JUZWNyQkIjNhb0BNPD5lODVGNiQiMyEqXFYmPXdHTz0kRlY3JCQiMyVHIipvJCkzbjRzJUYvJCIzRUs2Qzd2d3NARlY3JCQiMyFIZlpfdGZibCNGLyQiM15zPih6SCZlSDtGVjckJCIzUSsyU2xCRCE9IkYvJCIzQ21EKzJOUiczIkZWNyQkIjNBdlVxd1cjKlFtRkQkIjNDI3lsQ01kejkpRjY3JCQiMz14UyVSQU0xJkhGRCQiMycpPmNQSE8oPlYmRjY3JCQiM0E/KDRtK0soZjtGRCQiMzNfKkdYcyEpUjIlRjY3JCQiM3lEWlAlZidld3RGMyQiMydcJ2ZlJj4oKWZyI0Y2NyQkIjNPNyY+P0VJJFxURjMkIjNJZ0l5I1shKnAuI0Y2NyQkIjMyXFFVVGo5Vz1GMyQiMyM+NipmJ1wkKnpOIkY2NyQkIjNiK0JtamVPNVlGLCQiM0EhUnV5XG4qKnknRi83JEkqdW5kZWZpbmVkR0kqcHJvdGVjdGVkR0ZgaGxGX2hsLSUmQ09MT1JHNiYlJFJHQkckIiM1ISIiJCIiIUZnaGxGaGhsLSUrQVhFU0xBQkVMU0c2JFEhNiJGXWlsLSUqQVhFU1NUWUxFRzYjJSVOT05FRy0lJVZJRVdHNiQ7JCEiJkZnaGwkIiNdISIjRmZpbA==Attention MAPLE semble ajouter \340 la courbe son asymptote!!!De plus par manque de precision certains points de la courbe sont manquants ou approximatifs: car repr\351sent\351s en lignes bris\351es