Exercice 8 On d\351fnit la param\351trisation restart; x:=t->2*cos(t)+cos(2*t);y:=t->2*sin(t)-sin(2*t); NiM+SSJ4RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCYtSSRjb3NHRiU2IzkkIiIjLUYuNiMsJEYwRjEiIiJGJUYlRiU= NiM+SSJ5RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCYtSSRzaW5HRiU2IzkkIiIjLUYuNiMsJEYwRjEhIiJGJUYlRiU= Domaine d'Etude R\351duisons l'intervalle d'\351tude \340 -Pi..Pi, par 2Pi p\351riodicit\351 puis \340 0..Pi car[x(-t),y(-t)]=[x(t),-y(t)]; NiMvNyQsJi1JJGNvc0c2JEkqcHJvdGVjdGVkR0YpSShfc3lzbGliRzYiNiNJInRHRisiIiMtRic2IywkRi1GLiIiIiwmLUkkc2luR0YoRiwhIiMtRjVGMEYyRiQ= evalb(%); NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ= Donc la partie de courbe correspondant aux autres param\351tres se d\351duira par sym\351trie / \340 l'axe des abscisses Calculons le vecteur vitesse Vt:=[D(x)(t),D(y)(t)]; NiM+SSNWdEc2IjckLCYtSSRzaW5HNiRJKnByb3RlY3RlZEdGK0koX3N5c2xpYkdGJTYjSSJ0R0YlISIjLUYpNiMsJEYuIiIjRi8sJi1JJGNvc0dGKkYtRjMtRjZGMUYv V:=unapply(Vt,t); NiM+SSJWRzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlNyQsJi1JJHNpbkc2JEkqcHJvdGVjdGVkR0YxSShfc3lzbGliR0YlNiM5JCEiIy1GLzYjLCRGNCIiI0Y1LCYtSSRjb3NHRjBGM0Y5LUY8RjdGNUYlRiVGJQ== Cette courbe n'est donc r\351guli\350re, les point de param\350tre 0 est stationaire V(0); NiM3JCIiIUYk Tangente aux points A=M(0)=(3,0), B=M(Pi/2)=(-1,2) et C=M(Pi)=(-1,0) #les tangentes en B et C sont dirig\351es par les vecteurs V(Pi/2);V(Pi); NiM3JCIiIUYk NiM3JCEiIyIiIw== NiM3JCIiISEiJQ== D'o\371 les \351quations des tangentes XTA:=x(Pi/2)+t*op(1,V(Pi/2));YTA:=y(Pi/2)+t*op(2,V(Pi/2)); NiM+SSRYVEFHNiIsJiEiIiIiIkkidEdGJSEiIw== NiM+SSRZVEFHNiIsJiIiIyIiIkkidEdGJUYn XTC:=x(Pi)+t*op(1,V(Pi));YTC:=y(Pi)+t*op(2,V(Pi)); NiM+SSRYVENHNiIhIiI= NiM+SSRZVENHNiIsJEkidEdGJSEiJQ== EqTA:=[XTA,YTA,t=-infinity..infinity]:EqTC:=[XTC,YTC,t=-infinity..infinity]: Tangente au point stationnaire A Calculons la limite du taux d'accroissement en 0 Limit((y(t)-y(0))/(x(t)-x(0)),t=0)=limit((y(t)-y(0))/(x(t)-x(0)),t=0); NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkKiYsJi1JJHNpbkdGJjYjSSJ0R0YpIiIjLUYuNiMsJEYwRjEhIiIiIiIsKC1JJGNvc0dGJkYvRjEtRjlGM0Y2ISIkRjZGNS9GMCIiIUY9 On en d\351duit donc une tangente horizontale au point de A param\350tre 0 XTB:=x(0)+t;YTB:=y(0); NiM+SSRYVEJHNiIsJiIiJCIiIkkidEdGJUYo NiM+SSRZVEJHNiIiIiE= EqTB:=[XTB,YTB,t=-infinity..infinity]: Etude des variations de x et y plot(x,0..Pi,-2..3); LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdTNyQkIiIhRiskIiIkRis3JCQiMyUpZUQyTHp4Wm8hIz4kIjMvRm5EailbZilIISM8NyQkIjMpXCRweCpHKmYhRyIhIz0kIjNRV0MlUUUuNSZIRjQ3JCQiMys1QGV4R21dPkY4JCIzYTRQOSVIR3ApR0Y0NyQkIjNbOTkhPTNvXmkjRjgkIjMzIypvXiQpb3kneiNGNDckJCIzNSFcRDBbbmtIJEY4JCIzL0VRUzUoUUZvI0Y0NyQkIjM3Ij1aYSZ6JSk9UkY4JCIzb0xVXCg0Um1iI0Y0NyQkIjNlZFhhKClvR2pYRjgkIjM6Y3cySCMpKnBTI0Y0NyQkIjNXJTMqKkhibShIX0Y4JCIzZFooKkhcKFxQQiNGNDckJCIzN1BScjQpM1QqZUY4JCIzUCIqUj9oMGJXP0Y0NyQkIjN5IlspeXlrWXhsRjgkIjN2WF54OUFHTj1GNDckJCIzW3Mnb2NHbyR6ckY4JCIzNHRiRSh5VTNrIkY0NyQkIjNVUTA7Z3IncCZ5RjgkIjN1LyQpKXA8JT44OUY0NyQkIjN2Rk10PyRbdGApRjgkIjM3akRVX3E0eTZGNDckJCIzdSJwMzBrQEk+KkY4JCIzdy9vb1I/SyJbKkY4NyQkIjMjKlI3XEhlVil5KkY4JCIzKVxlK3lmVWxRKEY4NyQkIjMjR1spKSopM1cnXDVGNCQiM1IpXExRZXpfIlxGODckJCIzMCdbQFhTQCc0NkY0JCIzbUYrUyFSQTAnR0Y4NyQkIjNHOXckM0cqUXo2RjQkIjMpZSpIJDRJQVpTJkYxNyQkIjM+JTMqM3RjOVQ3RjQkITM8LG9hVlImKkg5Rjg3JCQiM0V5MERCQSEqMzhGNCQhM1UocChceWc0IlskRjg3JCQiM3FqRS4jW0FNUCJGNCQhMyJSInBFRiVSITRgRjg3JCQiMypSOl9NZ1UyVyJGNCQhMzlpJikpPkR2KXBxRjg3JCQiMyJRdSMpKipbakRdIkY0JCEzQHQpSD8lPlZWJilGODckJCIzPWh3InltWCNwOkY0JCEzQTx0MFUoUSpvKipGODckJCIzbXdNISo0KDQmUTtGNCQhMz0oPiVRLHI7RTZGNDckJCIzQ0RMOmlVISkpcCJGNCQhM0wjPlYuIlFzQTdGNDckJCIzbyhSMS8uQ1J3IkY0JCEzIVF6NjsqXD01OEY0NyQkIjMySWQpSDcqPko9RjQkITN1XmtzJD5lQlEiRjQ3JCQiM0dmYjd3WSwoKj1GNCQhM2dHaDo7SWBOOUY0NyQkIjNjTTUnemclcGc+RjQkITNJI3omemhfQ3I5RjQ3JCQiMyoqb0o4Oi5TSj9GNCQhMylmIXk0NHIkUVwiRjQ3JCQiMykqKnAhelBEJFw0I0Y0JCEzaWIjem9jKioqKlwiRjQ3JCQiM2s8IWZodW1GOyNGNCQhMydSPzkmUkVGJFwiRjQ3JCQiM3dhazNAWUJDQUY0JCEzU247K11scXc5RjQ3JCQiMzkvYjxXX1YiSCNGNCQhMytyLiczVycpKVs5RjQ3JCQiMyMqel9WJHpsWU4jRjQkITNoaEAkZVIyXlQiRjQ3JCQiM2NtallPKmYyVSNGNCQhM0tbM01iL3V0OEY0NyQkIjMpZXEpPVUhemBbI0Y0JCEzTFkjeVQqPjZIOEY0NyQkIjMjUSdISGQjSEliI0Y0JCEzW1ZZNl0kKSopejdGNDckJCIzel5yJltYJT09RUY0JCEzPi5LXCs4Ij5CIkY0NyQkIjMnPUJTXDA6W28jRjQkITNbYyFHJTM9LSU9IkY0NyQkIjNbZ04sP1IqM3YjRjQkITMqUmsrSkxjJFI2RjQ3JCQiM0AvMExNTmg2R0Y0JCEzUy9abyRRITMtNkY0NyQkIjN3I29VWDEwNylHRjQkITNLZVZdem45bDVGNDckJCIzVzQ2eGUmW00lSEY0JCEzcG84bTRyT1E1RjQ3JCQiM0guNillNTgpNElGNCQhMztjQzwjUSE+PDVGNDckJCIzS3QyUlhDTHRJRjQkITM1Yl9EK29rLzVGNDckJCIzISkqKipcL2wjZlRKRjQkISIiRistJSZDT0xPUkc2JiUkUkdCRyQiIzVGanokRitGanpGYVtsLSUrQVhFU0xBQkVMU0c2JFEhNiJGZVtsLSUlVklFV0c2JDtGYVtsJCIrYUVmVEohIio7JCEjP0ZqeiQiI0lGano= plot(y,0..Pi,-3..3); LSUlUExPVEc2JS0lJ0NVUlZFU0c2JDdlbjckJCIiIUYrRio3JCQiMyUpZUQyTHp4Wm8hIz4kIjMoZUwmW1g8STJLISNANyQkIjMpXCRweCpHKmYhRyIhIz0kIjNzdmk3YEldIjQjISM/NyQkIjMrNUBleEdtXT5GNiQiM3NZNSVvKikqNF90Rjk3JCQiM1s5OSE9M29eaSNGNiQiMyEqWy0yPjg9eTxGLzckJCIzNSFcRDBbbmtIJEY2JCIzWVpHTU5uIWZbJEYvNyQkIjM3Ij1aYSZ6JSk9UkY2JCIzN04rInBxdDJ6JkYvNyQkIjNlZFhhKClvR2pYRjYkIjMsXUEoM2EnKnksKkYvNyQkIjNXJTMqKkhibShIX0Y2JCIzJlFtRklcJz5OOEY2NyQkIjM3UFJyNCkzVCplRjYkIjNBeEtpaUQnZSg9RjY3JCQiM3kiWyl5eWtZeGxGNiQiM19udihRPk4zYiNGNjckJCIzW3Mnb2NHbyR6ckY2JCIzVSV6VSpcZl9aS0Y2NyQkIjNVUTA7Z3IncCZ5RjYkIjNxU1dwWiplajklRjY3JCQiM3ZGTXQ/JFt0YClGNiQiM1k9IzNtVWEhb15GNjckJCIzdSJwMzBrQEk+KkY2JCIzP3ZFbjUyL2dpRjY3JCQiMyMqUjdcSGVWKXkqRjYkIjMnXHgiKVt2Jz1PdEY2NyQkIjMjR1spKSopM1cnXDUhIzwkIjNoPCFHeV1PIzQoKUY2NyQkIjMwJ1tAWFNAJzQ2RmhwJCIzXEohKVxSYVBTKipGNjckJCIzRzl3JDNHKlF6NkZocCQiM151OyllPnBNOSJGaHA3JCQiMz4lMyozdGM5VDdGaHAkIjMxVyUzdUJZKHo3RmhwNyQkIjNFeTBEQkEhKjM4RmhwJCIzJD5fQz5kUTtWIkZocDckJCIzcWpFLiNbQU1QIkZocCQiM0sqWzxNZCVmdzpGaHA3JCQiMypSOl9NZ1UyVyJGaHAkIjN6bjIrcWEjZnMiRmhwNyQkIjMiUXUjKSoqW2pEXSJGaHAkIjMnM2VUQGUuJGY9RmhwNyQkIjM9aHcieW1YI3A6RmhwJCIzNVpVWiNHJypvKj5GaHA3JCQiM213TSEqNCg0JlE7RmhwJCIzX2Q3T0opSC84I0ZocDckJCIzQ0RMOmlVISkpcCJGaHAkIjNWaypcMGprb0IjRmhwNyQkIjNvKFIxLy5DUnciRmhwJCIzI2UyRWojKVImUkJGaHA3JCQiMzJJZClINyo+Sj1GaHAkIjNPZ1ZTI3leLFYjRmhwNyQkIjNHZmI3d1ksKCo9RmhwJCIzJ29TZTBUWTtdI0ZocDckJCIzY001J3pnJXBnPkZocCQiMyNSPlhHQklJYiNGaHA3JCQiM3kscmFodS8nKj5GaHAkIjNzLHExN0BbdERGaHA3JCQiMyoqb0o4Oi5TSj9GaHAkIjNLcHFDWDchemUjRmhwNyQkIjNbTT5ZRWs7aj9GaHAkIjN3U3hcSSRlYmYjRmhwNyQkIjMpKipwIXpQRCRcNCNGaHAkIjNnPWQmM1l2ISlmI0ZocDckJCIzIyllWyg+a1wpR0BGaHAkIjNHUiRbZVlzXGYjRmhwNyQkIjNrPCFmaHVtRjsjRmhwJCIzOUJHYidmJnkmZSNGaHA3JCQiM1VPRmkkbytOPiNGaHAkIjMzcEInKik+TkBkI0ZocDckJCIzd2FrM0BZQkNBRmhwJCIzOS90WVc5UGBERmhwNyQkIjM5L2I8V19WIkgjRmhwJCIzIzRjQmF3I1IlXCNGaHA3JCQiMyMqel9WJHpsWU4jRmhwJCIzJ3BcWSpRInBqVCNGaHA3JCQiM2NtallPKmYyVSNGaHAkIjNobC96YV5wNkJGaHA3JCQiMyllcSk9VSF6YFsjRmhwJCIzc1A0UWQvMCg9I0ZocDckJCIzI1EnSEhkI0hJYiNGaHAkIjNqXSJIXDpUUS4jRmhwNyQkIjN6XnImW1glPT1FRmhwJCIzO21VL2RZXWw9RmhwNyQkIjMnPUJTXDA6W28jRmhwJCIzIVFMbGBZKHp0O0ZocDckJCIzW2dOLD9SKjN2I0ZocCQiM3VvXC0mUVRmWSJGaHA3JCQiM0AvMExNTmg2R0ZocCQiMzUsO3IzLzhoN0ZocDckJCIzdyNvVVgxMDcpR0ZocCQiMzsiUSRSIypHWTc1RmhwNyQkIjM2JypvbDZvSzdIRmhwJCIzaVFAeVpAZHIqKUY2NyQkIjNXNDZ4ZSZbTSVIRmhwJCIzQ24mRyI+LShweihGNjckJCIzUTFoS0szandIRmhwJCIzX2MjcFBKLFNfJ0Y2NyQkIjNILjYpZTU4KTRJRmhwJCIzMyQ9JnpuSzpMX0Y2NyQkIjM0UWZqdkZkVElGaHAkIjNTLldBWW85JSlSRjY3JCQiM0t0MlJYQ0x0SUZocCQiM1QmNDY2ZzZecyNGNjckJCIzTSdRP3phaXU1JEZocCQiMzMkRyFSVTxhazhGNjckJCIzISkqKipcL2wjZlRKRmhwJCIzKT0xellQPGZEIiEjRC0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiRGK0ZqXWxGW15sLSUrQVhFU0xBQkVMU0c2JFEhNiJGX15sLSUlVklFV0c2JDtGW15sJCIrYUVmVEohIio7JCEjSUZqXWwkIiNJRmpdbA== varx:=D(x)(t)/abs(D(x)(t)): vary:=D(y)(t)/abs(D(y)(t))/2: On trace en rouge le signe x' et en vert le signe de y' plot([varx,vary],t=0..Pi,discont=true,thickness=[3,3]); LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JjdTNyQkIjNxKioqKipmPyF6KT0lISNFJCEiIiIiITckJCIzISpmK2omcCY9bFghIz5GLTckJCIzOzQiPV0qKkd0YClGM0YtNyQkIjMjPSF6J28mPlcrOCEjPUYtNyQkIjNbX2MkPTQ3LHYiRjpGLTckJCIzST1iOUJdayg+I0Y6Ri03JCQiM2ImZnMnUWBjN0VGOkYtNyQkIjNOZCN5QUgiPlVJRjpGLTckJCIzJzReJDNvNV4nWyRGOkYtNyQkIjN5O0Z0L2ZTSFJGOkYtNyQkIjNLRj0jSG94XFElRjpGLTckJCIzZyRvQkpiWGl5JUY6Ri03JCQiM1guVyRcOHl6QiZGOkYtNyQkIjNtNnc3dWJjInAmRjpGLTckJCIzRS4qKVw+Nm9HaEY6Ri03JCQiMy1tTzY2UmlEbEY6Ri03JCQiM2U0Q1okR0Z3KnBGOkYtNyQkIjMrWVhrX2daKFIoRjpGLTckJCIzPWhrJ29BJmZpeUY6Ri03JCQiM3VlUlkyWEl1IylGOkYtNyQkIjNkPyxwU1ssRSgpRjpGLTckJCIzcyo0NSIpKilcaDoqRjpGLTckJCIzMSY+KFIxMiZcZypGOkYtNyQkIjNfT2EpWyoqMzwrIiEjPEYtNyQkIjMpPUAjKip6UDtZNUZhcEYtNyQkIjNjMyVHeiEpUkI0IkZhcEYtNyQkIjNfSicqKWY8T0Q4IkZhcEYtNyQkIjMxUzdyYSRcZjwiRmFwRi03JCQiMzFjS0o7JSp6PzdGYXBGLTckJCIzNz9baV5rbms3RmFwRi03JCQiM1d6UVNSKEhySSJGYXBGLTckJCIzVS5eUnhvRWE4RmFwRi03JCQiM2VDIipRI3BAbVIiRmFwRi03JCQiM2EoW1x5XFc9VyJGYXBGLTckJCIzJ0cwRjUzQkdbIkZhcEYtNyQkIjMlUU0talxCd18iRmFwRi03JCQiM2UpUSlwJj54KHA6RmFwRi03JCQiM19QT2dkKlJRaCJGYXBGLTckJCIzN0tjSWgkPnBsIkZhcEYtNyQkIjNTdy1mLyY+P3EiRmFwRi03JCQiMyNwY19HSWNhdSJGYXBGLTckJCIzKTRhInotbigpKnkiRmFwRi03JCQiM1NXO1J6I0hSJD1GYXBGLTckJCIzWUBOO0EhNFcoPUZhcEYtNyQkIjNKQG5edkwhMyM+RmFwRi03JCQiM19DcEFRISpIaT5GYXBGLTckJCIzRFJ3XnA/YTE/RmFwRi03JCQiM3NVa3UmSCkpKVs/RmFwRi03JCQiMz8rKysqNCZSJTQjRmFwRi03UzckJCIzOSsrKzReUiU0I0ZhcCQiIiJGLzckJCIzJnBgK18uQHM2I0ZhcEZhdTckJCIzLWchUTp2IjNQQEZhcEZhdTckJCIzOyQzRlU/PCVmQEZhcEZhdTckJCIzQyxdejUyIT49I0ZhcEZhdTckJCIzWiMpMz1kdEYvQUZhcEZhdTckJCIzczcyenNMLURBRmFwRmF1NyQkIjNxcSYpSHFZXVlBRmFwRmF1NyQkIjM3NjAiKmUxc29BRmFwRmF1NyQkIjNxP19jK2EnM0gjRmFwRmF1NyQkIjNvUD1IKilSazhCRmFwRmF1NyQkIjNdJykzayNRMlBMI0ZhcEZhdTckJCIzU0QsYjZTSGNCRmFwRmF1NyQkIjNhVnhLJFF0KnlCRmFwRmF1NyQkIjNOeDNVZyJIM1MjRmFwRmF1NyQkIjMib0lVKSpIdzFVI0ZhcEZhdTckJCIzTjYzRm9rRldDRmFwRmF1NyQkIjNnVipvbCEqb1VZI0ZhcEZhdTckJCIzWXBMNGxbXyhbI0ZhcEZhdTckJCIzYzQhZSpHLjYzREZhcEZhdTckJCIzMUghUWElZXBJREZhcEZhdTckJCIzXSlSTyIpZi1BYiNGYXBGYXU3JCQiM0NLMVBRRWt1REZhcEZhdTckJCIzZyQzRy5nXF9mI0ZhcEZhdTckJCIzWGRJcSMqcFo8RUZhcEZhdTckJCIzcUxlWzFdY1NFRmFwRmF1NyQkIjMpPTdiLj5qMW0jRmFwRmF1NyQkIjNfI3BUJnoocEJvI0ZhcEZhdTckJCIzPStGOzVbei9GRmFwRmF1NyQkIjMmb1FVd0tMbnMjRmFwRmF1NyQkIjNbTjpPcipmenUjRmFwRmF1NyQkIjM3b3o7UyZHOngjRmFwRmF1NyQkIjNZIypcXFpmcSN6I0ZhcEZhdTckJCIzKnluVitOPGAiR0ZhcEZhdTckJCIzbCgqellUbSFlJEdGYXBGYXU3JCQiMzNVZSMqW28/ZUdGYXBGYXU3JCQiM28mb2ElKXAkR3pHRmFwRmF1NyQkIjNocC9Cel1KLEhGYXBGYXU3JCQiM2FzJjM0eWFHI0hGYXBGYXU3JCQiMy0iKilwQiZbU1hIRmFwRmF1NyQkIjMneXFFOERCcidIRmFwRmF1NyQkIjMjKT16Nl5NTCopSEZhcEZhdTckJCIzaXE2Q1IoZjgsJEZhcEZhdTckJCIzYVtZWTUnKmZKSUZhcEZhdTckJCIzM11dJnB5J3phSUZhcEZhdTckJCIzIVJoViI9WWF2SUZhcEZhdTckJCIzXzI5aExobSg0JEZhcEZhdTckJCIzVmRlYlkjUik9SkZhcEZhdTckJCIzLysrK1tFZlRKRmFwRmF1LSUqVEhJQ0tORVNTRzYjIiIkLSUmQ09MT1JHNiYlJFJHQkckIiM1Ri4kRi9GLkZdX2wtRiY2JjdmbjckJCIzJioqKioqKiopXGZsVSIhIz8kIjMrKysrKysrK11GOjckJCIzISoqKioqKnoqKj1KJkdGZF9sRmVfbDckJCIzMSsrKydceSd6VUZkX2xGZV9sNyQkIjNBKysrJip6QjFkRmRfbEZlX2w3JCQiM0UqKioqKioqKXBOZiYpRmRfbEZlX2w3JCQiMzArKysqZlo3OSJGM0ZlX2w3JCQiMyYpKioqKip6UnI9ciJGM0ZlX2w3JCQiMzUrKyspPiZcI0cjRjNGZV9sNyQkIjNxKioqKipmelVQVSRGM0ZlX2w3JCQiMzUrKysmUiEqXGMlRjNGZV9sNyQkIjM/KysrZ3MoNGInRjNGZV9sNyQkIjNqKysrSFQncGApRjNGZV9sNyQkIjMiKioqKioqNFMnUSs4RjpGZV9sNyQkIjMlKioqKioqKlJ0Ll08RjpGZV9sNyQkIjMtKysrbjZiKD4jRjpGZV9sNyQkIjMsKysrcVBYN0VGOkZlX2w3JCQiMyUpKioqKipIUWg/LyRGOkZlX2w3JCQiMycpKioqKio+PmlqWyRGOkZlX2w3JCQiMysrKytBIlEjSFJGOkZlX2w3JCQiM0crKytfL3olUSVGOkZlX2w3JCQiMz8rKyskPlRneSVGOkZlX2w3JCQiM2QqKioqKjRcYXhCJkY6RmVfbDckJCIzMSsrK25ESyJwJkY6RmVfbDckJCIzQysrK2AlPiVHaEY6RmVfbDckJCIzXCsrKypIWGBfJ0Y6RmVfbDckJCIzUysrK0ImR3QqcEY6RmVfbDckJCIzKSoqKioqKkhBZ3JSKEY6RmVfbDckJCIzbSoqKioqPmFmQSd5RjpGZV9sNyQkIjMlKSoqKioqcENeUkYpRjpGZV9sNyQkIjNGKysrKEhVY3MpRjpGZV9sNyQkIjNfKysrJCoqZWQ6KkY6RmVfbDckJCIzQCsrK1YxYS8nKkY6RmVfbDckJCIzLSsrK0hpbSw1RmFwRmVfbDckJCIzJSoqKioqKnA2PmgvIkZhcEZlX2w3JCQiMzErKyt0SkgjNCJGYXBGZV9sNyQkIjMqKSoqKioqXCN5W0s2RmFwRmVfbDckJCIzMysrK14iKiplPCJGYXBGZV9sNyQkIjMvKysrKUhaMkEiRmFwRmVfbDckJCIzKysrK2dDaWs3RmFwRmVfbDckJCIzNSsrK09SMjI4RmFwRmVfbDckJCIzJSoqKioqKjQxNFVOIkZhcEZlX2w3JCQiMyMqKioqKip6MWlsUiJGYXBGZV9sNyQkIjMpKioqKioqSCVIeVQ5RmFwRmVfbDckJCIzMSsrK3goZkZbIkZhcEZlX2w3JCQiMzArKyshR2V2XyJGYXBGZV9sNyQkIjMnKioqKioqKnoscnA6RmFwRmVfbDckJCIzLCsrK2g1eDg7RmFwRmVfbDckJCIzJSoqKioqKmZpW29sIkZhcEZlX2w3JCQiMzIrKytXbyU+cSJGYXBGZV9sNyQkIjMrKysrKXkiUVg8RmFwRmVfbDckJCIzJSoqKioqKjRIKykqeSJGYXBGZV9sNyQkIjMkKioqKioqcCk0JlEkPUZhcEZlX2w3JCQiMzMrKystIUhWKD1GYXBGZV9sNyQkIjMxKysrdjhzPz5GYXBGZV9sNyQkIjMxKysrbV9AaT5GYXBGZV9sNyQkIjM2KysrNGtYMT9GYXBGZV9sNyQkIjMrKysrRjMhKVs/RmFwRmVfbDckJCIzJSoqKioqKnpvMFY0I0ZhcEZlX2w3UzckJCIzJSkqKioqKipSWFslNCNGYXAkITMrKysrKysrK11GOjckJCIzVkQrKnBeM3Q2I0ZhcEZmamw3JCQiMyRbISpIdGBucjgjRmFwRmZqbDckJCIzKSopPiNwIzMsJmZARmFwRmZqbDckJCIzMylRIUhwRSk+PSNGYXBGZmpsNyQkIjN1QD0kW1NkVj8jRmFwRmZqbDckJCIzNldVJSlbOzVEQUZhcEZmamw3JCQiM3UrYyc+NiJlWUFGYXBGZmpsNyQkIjNdKFJfTT8mem9BRmFwRmZqbDckJCIzd25nMWEhUTRII0ZhcEZmamw3JCQiM3VQWGkocDlQSiNGYXBGZmpsNyQkIjNcQiVvd1B3UEwjRmFwRmZqbDckJCIzeVY9IXkyaGpOI0ZhcEZmamw3JCQiMzUwUilHXlEhekJGYXBGZmpsNyQkIjNSMz9oQkMqM1MjRmFwRmZqbDckJCIzVio9Jj5veXQ/Q0ZhcEZmamw3JCQiM1EpMyhIQGdMV0NGYXBGZmpsNyQkIjNzTSNcQnZFVlkjRmFwRmZqbDckJCIzOTwyJVxzIWUoWyNGYXBGZmpsNyQkIjN1KT49NFZrIjNERmFwRmZqbDckJCIzaiZSPCg9IVsyYCNGYXBGZmpsNyQkIjNHR2ImWyRIRF9ERmFwRmZqbDckJCIzL0I9JCllNXB1REZhcEZmamw3JCQiMzEmSG01RSdIJmYjRmFwRmZqbDckJCIzLTFCTWI8XzxFRmFwRmZqbDckJCIzTDVQYCh6MjFrI0ZhcEZmamw3JCQiM0c4cDdsVXFnRUZhcEZmamw3JCQiM0MkSClvKyE0Q28jRmFwRmZqbDckJCIzXSxKTDtAJFtxI0ZhcEZmamw3JCQiMzN4QFFnKG9ucyNGYXBGZmpsNyQkIjMzejNZImYkKnp1I0ZhcEZmamw3JCQiM3NVIlJ3OWc6eCNGYXBGZmpsNyQkIjMvVS1gWWR0I3ojRmFwRmZqbDckJCIzV3V2PT1fTTpHRmFwRmZqbDckJCIzU1R0JCpmRiRlJEdGYXBGZmpsNyQkIjNPXShRWDBKI2VHRmFwRmZqbDckJCIzVWcoPVU1MSR6R0ZhcEZmamw3JCQiM1Q1UmouY0wsSEZhcEZmamw3JCQiMzo3IlFmWXRHI0hGYXBGZmpsNyQkIjM7P2F1NjtVWEhGYXBGZmpsNyQkIjNxYiZvZzpRcidIRmFwRmZqbDckJCIzT2QqRyNma00qKUhGYXBGZmpsNyQkIjN6ZmtVbTNQNklGYXBGZmpsNyQkIjNFP1hGNCE0Oy4kRmFwRmZqbDckJCIzc1g7Jls/L1swJEZhcEZmamw3JCQiMyEzdyhHay1idklGYXBGZmpsNyQkIjNXMHpwISopcHc0JEZhcEZmamw3JCQiM0BaSmQmPlQpPUpGYXBGZmpsNyQkIjM1KysrYUVmVEpGYXBGZmpsRmNebC1GaF5sNiZGal5sRl1fbEZbX2xGXV9sLSUrQVhFU0xBQkVMU0c2J1EidDYiUSFGXmRtLSUlRk9OVEc2JCUqSEVMVkVUSUNBR0ZcX2wlK0hPUklaT05UQUxHRmRkbS0lJVZJRVdHNiQ7Rl1fbCQiMHoqZWBFZlRKISM5OyQhJC8iISIjJCIkLyJGX2Vt Support de la courbe total:=[x(t),y(t),t=-Pi..Pi]: partiel:=[x(t),y(t),t=0..Pi]: plot([total,partiel,EqTA,EqTB,EqTC],-3..3,-3..3,color=[blue,red,green,green,green],thickness=[1,2,2,2,2]); LSUlUExPVEc2KS0lJ0NVUlZFU0c2JTdhbzckJCEiIiIiISQiM0FcRTdHdSMzayIhI0U3JCQhMz88cFApUXdZKyIhIzwkITM4aiVmMGxqUHQjISM9NyQkITM1bXcqXDtfJj01RjMkITN1cGJpS1dhTmFGNjckJCEzUEFqdmM7d1A1RjMkITN1RCMqUk4kM2V0KEY2NyQkITNzZGtpeTk2ajVGMyQhM21jSiZcNiYpeScqKkY2NyQkITNtaHdPZS0qKlE2RjMkITMhPTIiPmUqKjNrOUYzNyQkITNvbFYlcFgsSkIiRjMkITNvKnBeUyczJSpwPUYzNyQkITNzOSopSC1rSUo4RjMkITMjKnB6JUdmIVskPiNGMzckJCEzbigzLGtwZEtUIkYzJCEzNHEnNF5CLj5UI0YzNyQkITNhI0cmPUowMnY5RjMkITMpZT5Qb1lbK2IjRjM3JCQhM2FqS0dPWU8kXCJGMyQhM1csaC9uI2VmZSNGMzckJCEzd2sqcCV6dyoqKlwiRjMkITMlKikqW0EpPXMhKWYjRjM3JCQhMylbIUdwKVwjUiRcIkYzJCEzLyhlKT12Xj0oZSNGMzckJCEzLWl0LCJmZUBaIkYzJCEzOTw/Qj1YUmFERjM3JCQhMzk+WXZRZF94OEYzJCEzYzw9Tj4oelFVI0YzNyQkITNOc2hvLiZSR0IiRjMkITNrOjNNWWVTW0FGMzckJCEzJ3oqNCR6dF0hKSkqKkY2JCEzJTRAVTBWMCkpKj5GMzckJCEzKTNgNWdsalAhcEY2JCEzN0UoKTMhNCVSNjxGMzckJCEzMWoyIm9yenJJJEY2JCEzVEkkKXpPY0w9OUYzNyQkITNBUnleaW5pLDpGNiQhMzFuJnpuWHZbRyJGMzckJCIzYCVcSiQqXCEpWyRSISM+JCEzW2puTVYiR0w6IkYzNyQkIjM5IlIjKTMiR3BVRkY2JCEzYlszY3BUTiw1RjM3JCQiM0s4bnQnPj4ncF5GNiQhMzVpMiplITNnaSYpRjY3JCQiM0MiPVckcCJHVUUoRjYkITN4X0MvRFFaLHVGNjckJCIzK2UheV9jbFNQKkY2JCEzcjs9dyYqZkI4akY2NyQkIjNFMG4nPXA9QD0iRjMkITM7Mz1gKmV3KFxeRjY3JCQiM28sUUMkUkpJVSJGMyQhM285ZCpcbnhjNSVGNjckJCIzPiskSDkmPWFJO0YzJCEzMTk8V1glcGlHJEY2NyQkIjNSK11GQShwLiQ9RjMkITMvNCMqcDQ3aW5ERjY3JCQiM0pOTjc2S2BKQUYzJCEza3lbUT9KOFQ4RjY3JCQiM3c4TUlWNFJdREYzJCEzJyo+QVFrImVfImZGXnI3JCQiM0RoPyp5M1AvIUdGMyQhMyJmNzQnNGNASTxGXnI3JCQiM0w/S216M1JXSEYzJCEzOSZHRilbUGRIRCEjPzckJCIzb1k1Zm4mM2EpSEYzJCEzKT48LTFoT1RSJCEjQDckJCIzOXgmM2M5cioqKkhGMyQhMzUnXD1qMCYpRylIISNENyQkIjNHPGR3Vz0pbylIRjMkIjMhbykpKio+WDRKKkdGY3Y3JCQiM280Q1wkW0lfJUhGMyQiMzk1aVBLXFRzQ0ZddjckJCIzZnhYTlpSYzFHRjMkIjNTdHhOanByXTtGXnI3JCQiMyc9WE8rKUgiKW9ERjMkIjNLZzYyWD0iNGImRl5yNyQkIjN1I3pAJ0d0bVJBRjMkIjMpXDRMIzRYUj44RjY3JCQiM01DNjE7TSxfPUYzJCIzLU1hOl1bKVJcI0Y2NyQkIjM1ODFFZjklb2siRjMkIjNVNj8qZl9bXUEkRjY3JCQiM2pkKkh4OTtMViJGMyQiMyFbJ3pfcEpLalNGNjckJCIzVSQpKkdhIzNQKj0iRjMkIjNsRCVRP0QoKW82JkY2NyQkIjNnMk0+TkNEOSUqRjYkIjMleUUmXEA0RyRIJ0Y2NyQkIjNzJnA2XyE+YHpyRjYkIjNRKUh1R0BVb1coRjY3JCQiM1FnTExHNXhpXEY2JCIzV2puYk46dyJvKUY2NyQkIjNcZyYqUS5dSlRFRjYkIjN3Yj4qKT4/bjI1RjM3JCQiMy0hUVtgKSoqUUJSRl5yJCIzLTpOZzBhU2A2RjM3JCQhMyNIamtqXEFFYyJGNiQiM2UlW01eVF0jKkciRjM3JCQhM0A0KWVCZ1Q7VSRGNiQiMyRRLio+KnAiM0Y5RjM3JCQhM1lzIypII1xQSzMoRjYkIjMjenBXUWkpNEY8RjM3JCQhM0kkcCpHcmBtUSoqRjYkIjMlSEsjRzhmKFEqPkYzNyQkITNWJFxqbC0hUUM3RjMkIjMlKmVJIilcKFsoUUFGMzckJCEzXSZ6KD1WTlchUSJGMyQiM3M8cTcqeWl3VSNGMzckJCEzMyU+VT1wIypHWiJGMyQiM1dlVyY9SyRcYkRGMzckJCEzQydcNC0oelokXCJGMyQiMylceGVpcEF0ZSNGMzckJCEzSzxXNyN5KioqKlwiRjMkIjNzJik0KFEkZTIpZiNGMzckJCEzR3lhNjI/YCRcIkYzJCIzXSMqSGleQEYnZSNGMzckJCEzOzZzJ1Ikb1F2OUYzJCIzYypmJlthQ3BdREYzNyQkITNGSywqenZlPVQiRjMkIjNAQXJqLENeM0NGMzckJCEzbkROKWZJejxMIkYzJCIzSWBJVnc/J1s+I0YzNyQkITNRJ1FSbShbKSpIN0YzJCIzKUc3bDdTJEhlPUYzNyQkITNNKTR1IlJ0KUg5IkYzJCIzbV9WbSMqejolWyJGMzckJCEzKW9pODNWeG0xIkYzJCIzcVsqPnliIjNDNUYzNyQkITNwP2ZQRnQzUjVGMyQiM094Jj4pKVIiM3B5RjY3JCQhMzM4MlpaZFY9NUYzJCIzcF9AIWY5ViY9YUY2NyQkITN1N1B5KnpZWSsiRjMkIjN0YFcrajk2REZGNjckRiokITNBXEU3R3UjM2siRi8tJSpUSElDS05FU1NHNiMiIiItJSZDT0xPUkc2JiUkUkdCRyRGLEYrRmphbCQiIzVGKy1GJjYlN1U3JCQiIiRGLCRGLEYsNyQkIjMnKTNdQWopW2YpSEYzJCIzJDNxXGp2LHQ/JEZjdjckJCIzW2xAdGpLK15IRjMkIjM3a3E+Z0ldIjQjRl12NyQkIjM3KmYhKlFIR3ApR0YzJCIza1pqZ0AqKjRfdEZddjckJCIzY1hiMSQpb3kneiNGMyQiMyllIilHXUsiPXk8Rl5yNyQkIjMhXEkxKDQoUUZvI0YzJCIzLSopWyVwdTFmWyRGXnI3JCQiM0dQMmAnNFJtYiNGMyQiM3kjUk1nc3QyeiZGXnI3JCQiM2w0dCF5QSkqcFMjRjMkIjMvKG9xLmQnKnksKkZecjckJCIzYHhsb1ooXFBCI0YzJCIzdmlaTShcJz5OOEY2NyQkIjNTI1xLI2YwYlc/RjMkIjNhYHdnb0QnZSg9RjY3JCQiM0xtIUdDQCNHTj1GMyQiM1lodCk9P04zYiNGNjckJCIzKVFVIWYleVUzayJGMyQiM1VSMSkqZmZfWktGNjckJCIzT2ptJlI8JT44OUYzJCIzXzZzRGcqZWo5JUY2NyQkIjMpeSJvMFxxNHk2RjMkIjNTM28iPldhIW9eRjY3JCQiMytlLjguP0siWypGNiQiM3FQJ28oRzIvZ2lGNjckJCIzUUVmJiplRGEnUShGNiQiM2E7QWR2bj1PdEY2NyQkIjNJKT12RmF6XyJcRjYkIjNeZCtnSmxCNCgpRjY3JCQiM1M4XiZ6TUEwJ0dGNiQiM04xSSFlWXYuJSoqRjY3JCQiMz5jRWNtPXMvYUZeciQiMzswIil5KT5wTTkiRjM3JCQhM2RTKG9zKVImKkg5RjYkIjM1dk5gU2l1ejdGMzckJCEzSWpjJz03JzQiWyRGNiQiM3NPPkR2JlE7ViJGMzckJCEzOTAxa3AlUiE0YEY2JCIzI3lQIipvZCVmdzpGMzckJCEzeSpcW0VIdilwcUY2JCIzOSNmcE5aRGZzIkYzNyQkITNFOiZHMCk+VlYmKUY2JCIzLUh0dCZlLiRmPUYzNyQkITNbQUFqeChRKm8qKkY2JCIzUURpLSdHJypvKj5GMzckJCEzYiZ5eVg1bmg3IkYzJCIzUkopelokKUgvOCNGMzckJCEzT2YpeUoiUXNBN0YzJCIzcDJTeExZJ29CI0YzNyQkITNiZEItJSpcPTU4RjMkIjNSRVBESClSJlJCRjM3JCQhMyk9P21jPmVCUSJGMyQiMyIpUidHXHleLFYjRjM3JCQhM04hUTl3LExiViJGMyQiMyIzPSJmN2trLERGMzckJCEzPSRveUZFWDdaIkYzJCIzT1c8Sk0tLmBERjM3JCQhM2skUWEmNHIkUVwiRjMkIjNdPkwpZkMsemUjRjM3JCQhM1dTYShvYyoqKipcIkYzJCIzKzIiXDNZdiEpZiNGMzckJCEzdzdQL1JFRiRcIkYzJCIzaSVccGNmJnkmZSNGMzckJCEzXSc+UyJcbHF3OUYzJCIzJ2V1QUZXckxiI0YzNyQkITMnUkQ7J1JrKSlbOUYzJCIzIz1AdkV3I1IlXCNGMzckJCEzYipHelVSMl5UIkYzJCIzQ0FjP04icGpUI0YzNyQkITMpR01FTlhTUFAiRjMkIjMpKioqZSgqXF5wNkJGMzckJCEzMl9aPCMqPjZIOEYzJCIzP0BhXF4vMCg9I0YzNyQkITNVcyQqKXpNKSopejdGMyQiM1tZcCJ6OVRRLiNGMzckJCEzVll2SylINj5CIkYzJCIzZ1YpZSpbWV1sPUYzNyQkITM7ImYraiE9LSU9IkYzJCIzKSllRkBjdXp0O0YzNyQkITNQRCkqM0pqTlI2RjMkIjNVJHppW1BUZlkiRjM3JCQhMyk9JXolPVEhMy02RjMkIjN1LC1vKFJJNkUiRjM3JCQhMzlkNCV6eFleMSJGMyQiM3lWSVghKUdZNzVGMzckJCEzU0ZKUzNyT1E1RjMkIjNjPjxhIzRxcHooRjY3JCQhM2lmVEgiUSE+PDVGMyQiMytjLXBNSjpMX0Y2NyQkITNcPSJHPG9YKjQ1RjMkIjNDJ2ZmL3JZVClSRjZGamBsNyQkITMoXCQpekMyazYrIkYzJCIzPSFRUEBnVFhPIkY2Rl9hbC1GY2FsNiMiIiMtRmdhbDYmRmlhbEZbYmxGamFsRmphbC1GJjYlN2ByNyQkIjNnJnlsTFNqXiRIISM5JCEzZyZ5bExTalQkSEZfYm03JCQiMytMR28sPDNuOUZfYm0kITMrTEdvLDwzbTlGX2JtNyQkIjMtYEJiVzhAeCgqISM6JCEzLWBCYlc4QG4oKkZqYm03JCQiM1JkVipbJHlTSXRGamJtJCEzUmRWKlskeVM/dEZqYm03JCQiM0l5ZmlXZktpZUZqYm0kITNJeWZpV2ZLX2VGamJtNyQkIjN3YT1mdF1nJClbRmpibSQhM3dhPWZ0XWd0W0ZqYm03JCQiMzEoZjp5cT1YPSVGamJtJCEzMShmOnlxPVg8JUZqYm03JCQiM0E7c1c8Uj9nT0ZqYm0kITNBO3NXPFI/XU9GamJtNyQkIjNDPmJWOk5TX0tGamJtJCEzQz5iVjpOU1VLRmpibTckJCIzKHlNUnk9amgjSEZqYm0kITMoeU1SeT1qaCJIRmpibTckJCIzN05VW3ojUiNmRUZqYm0kITM3TlVbeiNSI1xFRmpibTckJCIzQnA5ajZFIW9WI0ZqYm0kITNCcDlqNkUhb1UjRmpibTckJCIzW2h1SHlwZVtBRmpibSQhM1todUh5cGVRQUZqYm03JCQiM18pejJSTmZzMyNGamJtJCEzXyl6MlJOZnMyI0ZqYm03JCQiMyFRXEp0MlV1JT5GamJtJCEzIlFcSnQyVXUkPkZqYm03JCQiM3QpZkIoZT41RD1GamJtJCEzdClmQihlPjU6PUZqYm03JCQiM1M1SislemFyciJGamJtJCEzUzVKKyV6YXJxIkZqYm03JCQiMyxueHJkPD9AO0ZqYm0kITMsbnhyZDw/NjtGamJtNyQkIjNMIik0RVMhXGBgIkZqYm0kITNMIik0RVMhXGBfIkZqYm03JCQiM08kKSl5cGMiM2U5RmpibSQhM08kKSl5cGMiM1s5RmpibTckJCIzNyo+MEUhSDwpUSJGamJtJCEzNyo+MEUhSDx5OEZqYm03JCQiM3khKT1AJmY+WUsiRmpibSQhM3khKT1AJmY+WUoiRmpibTckJCIzKSp5YCU9bSNmbTdGamJtJCEzKSp5YCU9bSNmYzdGamJtNyQkIjNpTWQiZUksTUAiRmpibSQhM2lNZCJlSSxNPyJGamJtNyQkIjMqKkc4LkBOSD42RmpibSQhMyoqRzguQE5INDZGamJtNyQkIjMpKio+KnAhcEgnUTVGamJtJCEzKSoqPipwIXBIJ0c1RmpibTckJCIzL1V1bCdRNXNvKiEjOyQhMy9VdWwnUTVzZSpGY2ptNyQkIjN1RWJaSSg0YjIqRmNqbSQhM3VFYlpJKDRiKCopRmNqbTckJCIzQ3kuITQrY2E8KUZjam0kITNDeS4hNCtjYTIpRmNqbTckJCIzQC1uUnprP091RmNqbSQhM0AtblJ6az9PdEZjam03JCQiM1JLU11UNT89b0Zjam0kITNSS1NdVDU/PW5GY2ptNyQkIjMzd1wpR2RzUUgnRmNqbSQhMzN3XClHZHNRPidGY2ptNyQkIjNxZEIvLk9FX2FGY2ptJCEzcWRCLy5PRV9gRmNqbTckJCIzUlR4TVg4VzFbRmNqbSQhM1JUeE1YOFcxWkZjam03JCQiMzsnSGInSHYqKil5JEZjam0kITM7J0hiJ0h2KiopbyRGY2ptNyQkIjNgQTR4YDgwQEpGY2ptJCEzYEE0eGA4MEBJRmNqbTckJCIzJUc8PnAnKVtpayNGY2ptJCEzJUc8PnAnKVtpYSNGY2ptNyQkIjMxWzkrWTZXJEgjRmNqbSQhMzFbOStZNlckPiNGY2ptNyQkIjN4IUcrPillLjE9RmNqbSQhM3ghRys+KWUuMTxGY2ptNyQkIjNMVnBJI2ZDTF0iRmNqbSQhM0xWcEkjZkNMUyJGY2ptNyQkIjMrXF1OSyEqKm9GIkZjam0kITMrXF1OSyEqKm88IkZjam03JCQiM0hxd18qW0Y5NSJGY2ptJCEzSHF3XypbRjkrIkZjam03JCQiM1teQHEuMzZnJypGMyQhM1teQHEuMzZnJylGMzckJCIzO2ZEVSoqPWZfJilGMyQhMztmRFUqKj1mX3ZGMzckJCIzbSZwdmBYQzx2KEYzJCEzbSZwdmBYQzx2J0YzNyQkIjNzKioqKioqZiplcCpwRjMkITNzKioqKioqZiplcCpmRjM3JCQiM0ArKysrJUdSSSdGMyQhM0ArKysrJUdSSSZGMzckJCIzMysrK1NdMU9jRjMkITMzKysrU10xT1lGMzckJCIzNSsrU0U2ZUhdRjMkITM1KytTRTZlSFNGMzckJCIzUysrIUc0OCUzVkYzJCEzUysrIUc0OCUzTEYzNyQkIjM1KyshRzwqWyhwJEYzJCEzNSsrIUc8KlsocCNGMzckJCIzJSkqKioqPj4lUm8pSEYzJCEzJSkqKioqPj4lUm8pPkYzNyQkIjM5KyshRyhSemRCRjMkITM5KyshRyhSemQ4RjM3JCQiMzcrKz8+OWpuO0YzJCEzSywrKyM+OWpuJ0Y2NyQkIjM7Kys/Zk1WNTVGMyQhMzk7Kys/Zk1WNUZecjckJCIzMysrK0dMO1pLRjYkIjMjKioqKioqPm5PR3YnRjY3JCQhM2EqKioqKip6LycpXElGNiQiMyYqKioqKip6LycpXEkiRjM3JCQhMzorKytXODBVKSpGNiQiMy0rK1NNXj8lKT5GMzckJCEzOSsrKyEpR3MqbyJGMyQiMzkrKyshKUdzKm8jRjM3JCQhMy0rKytXInlRSSNGMyQiMy0rKytXInlRSSRGMzckJCEzJykqKioqKmZsIz1uSEYzJCIzJykqKioqKmZsIz1uUkYzNyQkITN3KioqKioqPjZXX09GMyQiM3cqKioqKio+NldfWUYzNyQkITMsKysrW0ckR0slRjMkIjMsKysrW0ckR0smRjM3JCQhMyMpKioqKipmSHI5KFxGMyQiMyMpKioqKipmSHI5KGZGMzckJCEzZSoqKioqenN0O3AmRjMkIjNlKioqKip6c3Q7cCdGMzckJCEzKCoqKioqKj5qMilRakYzJCIzKCoqKioqKj5qMilRdEYzNyQkITNGKysrKzd3SHFGMyQiM1EqKioqKioqPmgoSCEpRjM3JCQhMykqKioqKioqUnknZWwoRjMkIjM1KioqKioqUnknZWwpRjM3JCQhM1kqKioqKipmeE9TJClGMyQiM1kqKioqKipmeE9TJCpGMzckJCEzSSsrK1spR1cpKilGMyQiM0krKytbKUdXKSoqRjM3JCQhMyFHWDN2N2xscipGMyQiM0dYM3Y3bGxyNUZjam03JCQhMytDUW5kM1xkNUZjam0kIjMrQ1FuZDNcZDZGY2ptNyQkITMxUiU+cTBZdjsiRmNqbSQiMzFSJT5xMFl2RSJGY2ptNyQkITNSU1okUSRwVis4RmNqbSQiM1JTWiRRJHBWKzlGY2ptNyQkITM9PkgsZ2VhdjlGY2ptJCIzPT5ILGdlYXY6RmNqbTckJCEzSzhHWyIqPT4zPEZjam0kIjNLOEdbIio9PjM9RmNqbTckJCEzITNITG4vO1QrI0Zjam0kIjMhM0hMbi87VDUjRmNqbTckJCEzWDQiPVhoN0leI0Zjam0kIjNYNCI9WGg3SWgjRmNqbTckJCEzXENqXihmbjAlR0Zjam0kIjNcQ2peKGZuMCVIRmNqbTckJCEzNXchPXlCPTVGJEZjam0kIjM1dyE9eUI9NVAkRmNqbTckJCEzO0xLPnVDKCkzUkZjam0kIjM7TEs+dUMoKTNTRmNqbTckJCEzQ2kncHIpPSZ6J1tGY2ptJCIzQ2kncHIpPSZ6J1xGY2ptNyQkITN4cnVjIjNFN18mRmNqbSQiM3hydWMiM0U3aSZGY2ptNyQkITNbJClma3huJD5RJ0Zjam0kIjM/JSlma3huJD5bJ0Zjam03JCQhMyFmbGhzIyk9TyNwRmNqbSQiMyFmbGhzIyk9Ty0oRmNqbTckJCEzLzxac3pJYG52RmNqbSQiMy88WnN6SWBud0Zjam03JCQhMzFOVVx4bmpYJClGY2ptJCIzMU5VXHhualglKUZjam03JCQhMyUqUSUqekJndi8kKkZjam0kIjMlKlElKnpCZ3YvJSpGY2ptNyQkITMxKVJOXk8xJT0qKkZjam0kIjMiKVJOXk8xJT0rIkZqYm03JCQhM3lcYys8QCg+MSJGamJtJCIzeVxjKzxAKD4yIkZqYm03JCQhM2FcWDVkSSpHOSJGamJtJCIzYVxYNWRJKkc6IkZqYm03JCQhM3FoSzwuM0lQN0ZqYm0kIjNxaEs8LjNJWjdGamJtNyQkITM5Z1BgLTxtIUgiRmpibSQiMzpnUGAtPG0rOEZqYm03JCQhM0spNGVBZnQpWzhGamJtJCIzSyk0ZUFmdCllOEZqYm03JCQhM3grKilbJlxIRVQiRmpibSQiM3grKilbJlxIRVUiRmpibTckJCEzOzl6IVEnNHcjWyJGamJtJCIzOTl6IVEnNHcjXCJGamJtNyQkITM5KXBNN3B1LWMiRmpibSQiMzkpcE03cHUtZCJGamJtNyQkITNNelJqKDMsa2siRmpibSQiM016UmooMyxrbCJGamJtNyQkITNsckUhbycqZkV1IkZqYm0kIjNrckUhbycqZkV2IkZqYm03JCQhM2kjKilmWj9eNCY9RmpibSQiM2kjKilmWj9eNCc9RmpibTckJCEzaXpxLXQ3b3Q+RmpibSQiM2l6cS10N28kKT5GamJtNyQkITNacV5NMVUlUjYjRmpibSQiM1pxXk0xVSVSNyNGamJtNyQkITM9MSI0VTYneXZBRmpibSQiMz0xIjRVNid5JkcjRmpibTckJCEzU0JsTTE7Z2tDRmpibSQiM1NCbE0xO2d1Q0ZqYm03JCQhM2knPjtYPVp4byNGamJtJCIzaSc+O1g9WnhwI0ZqYm03JCQhMyNbWFQ9KT5fYkhGamJtJCIzI1tYVD0pPl9sSEZqYm03JCQhM1d0ekV2QCFHRyRGamJtJCIzV3R6RXZAIUdIJEZqYm03JCQhM0MmeT4mNEMhPnAkRmpibSQiM0MmeT4mNEMhPnEkRmpibTckJCEzJTRNIXA3JSkpeUAlRmpibSQiMyU0TSFwNyUpKXlBJUZqYm03JCQhM243ajFpST8+XEZqYm0kIjNuN2oxaUk/SFxGamJtNyQkITNqNEhvalIvLGZGamJtJCIzajRIb2pSLzZmRmpibTckJCEzW3EmUiE+WyFRUChGamJtJCIzW3EmUiE+WyFRUShGamJtNyQkITNNREU4Q2hTRykqRmpibSQiM01ERThDaFNRKSpGamJtNyQkITNPIio+UCo0aFBaIkZfYm0kIjNPIio+UCo0aFpaIkZfYm03JCQhM3EjKVJ1KT5BbCVIRl9ibSQiM3EjKVJ1KT5BdiVIRl9ibTckSSp1bmRlZmluZWRHSSpwcm90ZWN0ZWRHRmBmb0ZfZm9GZGFtLUZnYWw2JkZpYWxGamFsRltibEZqYWwtRiY2JTdTNyQkITItKysrISoqKioqKioqIiQiSEZjYmw3JCQhM0daKUg8J1t2KEclRmNqbUZjYmw3JCQhMytWQjxzMUFgQEZjam1GY2JsNyQkITNYaUpYd2NfNThGY2ptRmNibDckJCEzdVMuaUZkP24qKUYzRmNibDckJCEzdExYdTMleixgJ0YzRmNibDckJCEzcW8tMmlIaTtdRjNGY2JsNyQkITNHXywnSDsmXCUpUUYzRmNibDckJCEzZGwhUnpXUHIrJEYzRmNibDckJCEzJUhKaERTYitMI0YzRmNibDckJCEzSydcIjRdZkh3PEYzRmNibDckJCEzUT9oS0dBJ2VQIkYzRmNibDckJCEzMy4rKytbeiUpKipGNkZjYmw3JCQhMzAsKysrP2s+bEY2RmNibDckJCEzVSsrKytfSyE9JEY2RmNibDckJCEzYVJMTExqMHo5Rl5yRmNibDckJCIzN0pMTExYJHpYJEY2RmNibDckJCIzNkdMTExUYjdsRjZGY2JsNyQkIjNnKioqKioqKkchZTE1RjNGY2JsNyQkIjNlS0xMOEk1QDhGM0ZjYmw3JCQiM00rKyshSCU9bTtGM0ZjYmw3JCQiMzUrKytxS3klKj5GM0ZjYmw3JCQiM2BMTExMPWtQQkYzRmNibDckJCIzRUxMTEJJXF9FRjNGY2JsNyQkIjNfbW1tbUQ1IypIRjNGY2JsNyQkIjNObG1tTzknW00kRjNGY2JsNyQkIjM9KioqKioqcCFSPmwkRjNGY2JsNyQkIjMjZW1tbUsiZiQpUkYzRmNibDckJCIzVyoqKioqKmYwQUVWRjNGY2JsNyQkIjNNKSoqKioqPmtUaFlGM0ZjYmw3JCQiM3UpKioqKipcY3QmKVxGM0ZjYmw3JCQiM2UpKioqKipmbyRlTSZGM0ZjYmw3JCQiMz9LTEw4UVNwY0YzRmNibDckJCIzcCoqKioqKipmISlbLCdGM0ZjYmw3JCQiMyVmbW1tIlIkeksnRjNGY2JsNyQkIjNzKioqKioqelE9cW1GM0ZjYmw3JCQiM21KTExCV0AjKnBGM0ZjYmw3JCQiMyFRYkdoYyNHZXRGM0ZjYmw3JCQiM3ltIlxYR2F1eShGM0ZjYmw3JCQiM3c6J2UnKUdJeEwpRjNGY2JsNyQkIjNVciF5Xm4lPS0hKkYzRmNibDckJCIzT21FNydISHgoKSpGM0ZjYmw3JCQiM1YtP1pYZjQvNkZjam1GY2JsNyQkIjNTWG1PQiFlP0QiRmNqbUZjYmw3JCQiM3EtQFozal0xOkZjam1GY2JsNyQkIjMlKm8oKTRCIjRiKT1GY2ptRmNibDckJCIzRzMhKm9dZihSbyNGY2ptRmNibDckJCIzVXZCVSYpelAtXEZjam1GY2JsNyQkIjItKysrISoqKioqKioqRmlmb0ZjYmxGZGFtRmFmby1GJjYlN2FxNyRGKiQiMz9yOnQxb0tzZUZfYm03JEYqJCIzK21jTy5NO09IRl9ibTckRiokIjNncS8iKm9BV2Q+Rl9ibTckRiokIjNbcil5cGMiM285Rl9ibTckRiokIjNtJj5EKik9bFc8IkZfYm03JEYqJCIzXzRQPVosQCh5KkZqYm03JEYqJCIzNSU+SmNUUCEqUSlGamJtNyRGKiQiM1ZLVypbJHlTU3RGamJtNyRGKiQiM1tRNSgzLjJbXydGamJtNyRGKiQiM3UmcHljUEVCKGVGamJtNyRGKiQiM0FxJW8qZSZ5JVFgRmpibTckRiokIjNZUUhFQl9nJCpbRmpibTckRiokIjMoSCNcZmNSPDxYRmpibTckRiokIjMvKGY6eXE9WD4lRmpibTckRiokIjNoKClIbWFUKVsiUkZqYm03JEYqJCIzWSg+WnUiUj9xT0ZqYm03JEYqJCIzITNBMSEpZTRWWCRGamJtNyRGKiQiMy1NYlY6TlNpS0ZqYm03JEYqJCIza2k+XyEzKXAhNCRGamJtNyRGKiQiM3NteCZSOGpoJEhGamJtNyRGKiQiM2NoUFUhPlIjcEVGamJtNyRGKiQiM0NwOWo2RSFvVyNGamJtNyRGKiQiMycqKlIpUiJRZnM0I0ZqYm03JEYqJCIzTjBeNFk+NU49RmpibTckRiokIjNXUyR6ZUhUc10iRmpibTckRiokIjNBJipwZDlYeHk3RmpibTckRiokIjNhciUzMXNfLzYiRmpibTckRiokIjN5I1smcCFwIylHIikqRmNqbTckRiokIjMyWD1hMkY1VWtGY2ptNyRGKiQiMzcnKkcrI0gjKW95JUZjam03JEYqJCIzYWgwIVF3cj8iUUZjam03JEYqJCIzbScpUWglPVxtPyRGY2ptNyRGKiQiMyspNDVaMSl6YEZGY2ptNyRGKiQiM2VTYDB6XCZHUyNGY2ptNyRGKiQiM0lJL3VnQC1LQEZjam03JEYqJCIzJD1eJSkpeiQ9MCI+RmNqbTckRiokIjM5Ul4yIipbTV08RmNqbTckRiokIjMlKioqKioqPnoiUipmIkZjam03JEYqJCIzLysrKyFvJnlnOUZjam03JEYqJCIzLSsrKzNJQEY4RmNqbTckRiokIjMtKytHRGkiZj8iRmNqbTckRiokIjMzKytjPUVvaDVGY2ptNyRGKiQiM0ErK2dYJHlcUipGMzckRiokIjNxKioqKlJRKXlPKHpGMzckRiokIjNGKytnWHplOm5GMzckRiokIjNFKytTUUdFTmBGMzckRiokIjNLKytTPXAnMy0lRjM3JEYqJCIzLSsrZ2xFVlxFRjM3JEYqJCIzMysrKy96LSFSIkYzNyRGKiQiMycpKioqKioqPkooKmVKRl5yNyRGKiQhMzMrKytnZFd6OEYzNyRGKiQhMy4rKyspR2N4ZyNGMzckRiokITNzKioqKio+SmxWJFJGMzckRiokITNgKioqKioqUkEpW0kmRjM3JEYqJCEzLSsrKydwbGNrJ0YzNyRGKiQhM2oqKioqKj5mVUglekYzNyRGKiQhMz8qKioqKmZYWkxRKkYzNyRGKiQhMysrK1NFOnduNUZjam03JEYqJCEzMCsrK1NBJmY/IkZjam03JEYqJCEzKysrK29OPEo4RmNqbTckRiokITMzKysrX04ybzlGY2ptNyRGKiQhMzErK2dwZClvZiJGY2ptNyRGKiQhM2MhcCxiLThMdSJGY2ptNyRGKiQhMyxbd006PClcIj5GY2ptNyRGKiQhMzZ5KVFTNiM0TkBGY2ptNyRGKiQhM3ohW3B3J1EoM1MjRmNqbTckRiokITNNUWUtPzw0XkZGY2ptNyRGKiQhM2tFYydIeSRRO0tGY2ptNyRGKiQhM2ciZW1NNEsjM1FGY2ptNyRGKiQhMyopPWkuSF8tRVtGY2ptNyRGKiQhM11eaGp2ay5VakZjam03JEYqJCEzS21rUVtcdTx3RmNqbTckRiokITNZQyRSVnguZmAqRmNqbTckRiokITNPJVw4akBYVTMiRmpibTckRiokITNxJz5IYk4oUWM3RmpibTckRiokITNTVlwlZmgxTlwiRmpibTckRiokITN6KCkpZlo/XjQlPUZqYm03JEYqJCEzYypINlNCV1I1I0ZqYm03JEYqJCEzU0JsTTE7Z2FDRmpibTckRiokITNpJz47WD1aeG4jRmpibTckRiokITNJR2VoRj5fWEhGamJtNyRGKiQhM0cnUnBDUVwwNSRGamJtNyRGKiQhM21lekV2QCFHRiRGamJtNyRGKiQhM0lWYGdMKj5gWSRGamJtNyRGKiQhM0MmeT4mNEMhPm8kRmpibTckRiokITNCZlQwWURPRlJGamJtNyRGKiQhMyU0TSFwNyUpKXk/JUZqYm03JEYqJCEzUTcjPSVHQWRKWEZqYm03JEYqJCEzellJcDdLPzRcRmpibTckRiokITNFJFJLIXBWXGJgRmpibTckRiokITNpNEhvalIvIiplRmpibTckRiokITMpbyVmYF1WZ1hsRmpibTckRiokITNbcSZSIT5bIVFPKEZqYm03JEYqJCEzKT1vIVFEb3g6JSlGamJtNyRGKiQhM01ERThDaFM9KSpGamJtNyRGKiQhMyU+ZU9GejMjeTZGX2JtNyRGKiQhMzU5eiFRJzR3czlGX2JtNyRGKiQhMzNEbCNbQSJvaj5GX2JtNyRGKiQhM3EjKVJ1KT5BYiVIRl9ibTckRiokITNTbHpbKFJXNSplRl9ibUZeZm9GZGFtRmFmby0lK0FYRVNMQUJFTFNHNiRRITYiRlxjcS0lJVZJRVdHNiQ7JCEjSUYrJCIjSUYrRmFjcQ== plot(total,-3..3,-3..3,axes=none); LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdhbzckJCEiIiIiISQiM0FcRTdHdSMzayIhI0U3JCQhMz88cFApUXdZKyIhIzwkITM4aiVmMGxqUHQjISM9NyQkITM1bXcqXDtfJj01RjMkITN1cGJpS1dhTmFGNjckJCEzUEFqdmM7d1A1RjMkITN1RCMqUk4kM2V0KEY2NyQkITNzZGtpeTk2ajVGMyQhM21jSiZcNiYpeScqKkY2NyQkITNtaHdPZS0qKlE2RjMkITMhPTIiPmUqKjNrOUYzNyQkITNvbFYlcFgsSkIiRjMkITNvKnBeUyczJSpwPUYzNyQkITNzOSopSC1rSUo4RjMkITMjKnB6JUdmIVskPiNGMzckJCEzbigzLGtwZEtUIkYzJCEzNHEnNF5CLj5UI0YzNyQkITNhI0cmPUowMnY5RjMkITMpZT5Qb1lbK2IjRjM3JCQhM2FqS0dPWU8kXCJGMyQhM1csaC9uI2VmZSNGMzckJCEzd2sqcCV6dyoqKlwiRjMkITMlKikqW0EpPXMhKWYjRjM3JCQhMylbIUdwKVwjUiRcIkYzJCEzLyhlKT12Xj0oZSNGMzckJCEzLWl0LCJmZUBaIkYzJCEzOTw/Qj1YUmFERjM3JCQhMzk+WXZRZF94OEYzJCEzYzw9Tj4oelFVI0YzNyQkITNOc2hvLiZSR0IiRjMkITNrOjNNWWVTW0FGMzckJCEzJ3oqNCR6dF0hKSkqKkY2JCEzJTRAVTBWMCkpKj5GMzckJCEzKTNgNWdsalAhcEY2JCEzN0UoKTMhNCVSNjxGMzckJCEzMWoyIm9yenJJJEY2JCEzVEkkKXpPY0w9OUYzNyQkITNBUnleaW5pLDpGNiQhMzFuJnpuWHZbRyJGMzckJCIzYCVcSiQqXCEpWyRSISM+JCEzW2puTVYiR0w6IkYzNyQkIjM5IlIjKTMiR3BVRkY2JCEzYlszY3BUTiw1RjM3JCQiM0s4bnQnPj4ncF5GNiQhMzVpMiplITNnaSYpRjY3JCQiM0MiPVckcCJHVUUoRjYkITN4X0MvRFFaLHVGNjckJCIzK2UheV9jbFNQKkY2JCEzcjs9dyYqZkI4akY2NyQkIjNFMG4nPXA9QD0iRjMkITM7Mz1gKmV3KFxeRjY3JCQiM28sUUMkUkpJVSJGMyQhM285ZCpcbnhjNSVGNjckJCIzPiskSDkmPWFJO0YzJCEzMTk8V1glcGlHJEY2NyQkIjNSK11GQShwLiQ9RjMkITMvNCMqcDQ3aW5ERjY3JCQiM0pOTjc2S2BKQUYzJCEza3lbUT9KOFQ4RjY3JCQiM3c4TUlWNFJdREYzJCEzJyo+QVFrImVfImZGXnI3JCQiM0RoPyp5M1AvIUdGMyQhMyJmNzQnNGNASTxGXnI3JCQiM0w/S216M1JXSEYzJCEzOSZHRilbUGRIRCEjPzckJCIzb1k1Zm4mM2EpSEYzJCEzKT48LTFoT1RSJCEjQDckJCIzOXgmM2M5cioqKkhGMyQhMzUnXD1qMCYpRylIISNENyQkIjNHPGR3Vz0pbylIRjMkIjMhbykpKio+WDRKKkdGY3Y3JCQiM280Q1wkW0lfJUhGMyQiMzk1aVBLXFRzQ0ZddjckJCIzZnhYTlpSYzFHRjMkIjNTdHhOanByXTtGXnI3JCQiMyc9WE8rKUgiKW9ERjMkIjNLZzYyWD0iNGImRl5yNyQkIjN1I3pAJ0d0bVJBRjMkIjMpXDRMIzRYUj44RjY3JCQiM01DNjE7TSxfPUYzJCIzLU1hOl1bKVJcI0Y2NyQkIjM1ODFFZjklb2siRjMkIjNVNj8qZl9bXUEkRjY3JCQiM2pkKkh4OTtMViJGMyQiMyFbJ3pfcEpLalNGNjckJCIzVSQpKkdhIzNQKj0iRjMkIjNsRCVRP0QoKW82JkY2NyQkIjNnMk0+TkNEOSUqRjYkIjMleUUmXEA0RyRIJ0Y2NyQkIjNzJnA2XyE+YHpyRjYkIjNRKUh1R0BVb1coRjY3JCQiM1FnTExHNXhpXEY2JCIzV2puYk46dyJvKUY2NyQkIjNcZyYqUS5dSlRFRjYkIjN3Yj4qKT4/bjI1RjM3JCQiMy0hUVtgKSoqUUJSRl5yJCIzLTpOZzBhU2A2RjM3JCQhMyNIamtqXEFFYyJGNiQiM2UlW01eVF0jKkciRjM3JCQhM0A0KWVCZ1Q7VSRGNiQiMyRRLio+KnAiM0Y5RjM3JCQhM1lzIypII1xQSzMoRjYkIjMjenBXUWkpNEY8RjM3JCQhM0kkcCpHcmBtUSoqRjYkIjMlSEsjRzhmKFEqPkYzNyQkITNWJFxqbC0hUUM3RjMkIjMlKmVJIilcKFsoUUFGMzckJCEzXSZ6KD1WTlchUSJGMyQiM3M8cTcqeWl3VSNGMzckJCEzMyU+VT1wIypHWiJGMyQiM1dlVyY9SyRcYkRGMzckJCEzQydcNC0oelokXCJGMyQiMylceGVpcEF0ZSNGMzckJCEzSzxXNyN5KioqKlwiRjMkIjNzJik0KFEkZTIpZiNGMzckJCEzR3lhNjI/YCRcIkYzJCIzXSMqSGleQEYnZSNGMzckJCEzOzZzJ1Ikb1F2OUYzJCIzYypmJlthQ3BdREYzNyQkITNGSywqenZlPVQiRjMkIjNAQXJqLENeM0NGMzckJCEzbkROKWZJejxMIkYzJCIzSWBJVnc/J1s+I0YzNyQkITNRJ1FSbShbKSpIN0YzJCIzKUc3bDdTJEhlPUYzNyQkITNNKTR1IlJ0KUg5IkYzJCIzbV9WbSMqejolWyJGMzckJCEzKW9pODNWeG0xIkYzJCIzcVsqPnliIjNDNUYzNyQkITNwP2ZQRnQzUjVGMyQiM094Jj4pKVIiM3B5RjY3JCQhMzM4MlpaZFY9NUYzJCIzcF9AIWY5ViY9YUY2NyQkITN1N1B5KnpZWSsiRjMkIjN0YFcrajk2REZGNjckRiokITNBXEU3R3UjM2siRi8tJSZDT0xPUkc2JiUkUkdCRyQiIzVGKyRGLEYrRmhhbC0lK0FYRVNMQUJFTFNHNiRRITYiRlxibC0lKkFYRVNTVFlMRUc2IyUlTk9ORUctJSVWSUVXRzYkOyQhI0lGKyQiI0lGK0ZlYmw=