Exercice 9On d\351fnit la param\351trisation, restart;x:=t->1/t+ ln(2+t);y:=t->t+1/t;NiM+SSJ4RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCYqJDkkISIiIiIiLUkjbG5HNiRJKnByb3RlY3RlZEdGNEkoX3N5c2xpYkdGJTYjLCYiIiNGMEYuRjBGMEYlRiVGJQ==NiM+SSJ5RzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlLCY5JCIiIiokRi0hIiJGLkYlRiVGJQ==Calculons le vecteur vitesseVt:=[D(x)(t),D(y)(t)];NiM+SSNWdEc2IjckLCYqJEkidEdGJSEiIyEiIiokLCYiIiMiIiJGKUYvRitGLywmRi9GL0YoRis=Vt:=factor(Vt);NiM+SSNWdEc2IjckKiosJkkidEdGJSIiIkYqRipGKiwmRilGKiEiI0YqRipGKUYsLCYiIiNGKkYpRiohIiIqKCwmRilGKkYvRipGKkYoRipGKUYsV:=unapply(Vt,t);NiM+SSJWRzYiZio2I0kidEdGJUYlNiRJKW9wZXJhdG9yR0YlSSZhcnJvd0dGJUYlNyQqKiwmOSQiIiJGMEYwRjAsJkYvRjAhIiNGMEYwRi9GMiwmIiIjRjBGL0YwISIiKigsJkYvRjBGNUYwRjBGLkYwRi9GMkYlRiVGJQ==V(-1);NiM3JCIiIUYkCette courbe n'est donc r\351guli\350re, le point de param\350tre -1 est stationaireTangente aux points A=M(-1)=(-1,-2), B=M(1)=(1+ln(3),0) et C=M(2)=(1/2,5/2)Les tangentes en B et C sont dirig\351es par les vecteursV(1);V(2);NiM3JCMhIiMiIiQiIiE=NiM3JCIiISMiIiQiIiU=D'o\371 les \351quations des tangentesXTB:=x(1)+t*op(1,V(1));YTB:=y(1)+t*op(2,V(1));NiM+SSRYVEJHNiIsKCIiIkYnLUkjbG5HNiRJKnByb3RlY3RlZEdGK0koX3N5c2xpYkdGJTYjIiIkRidJInRHRiUjISIjRi4=NiM+SSRZVEJHNiIiIiM=XTC:=x(2)+t*op(1,V(2));YTC:=y(2)+t*op(2,V(2));NiM+SSRYVENHNiIsJiMiIiIiIiNGKC1JI2xuRzYkSSpwcm90ZWN0ZWRHRi1JKF9zeXNsaWJHRiU2I0YpRik=NiM+SSRZVENHNiIsJiMiIiYiIiMiIiJJInRHRiUjIiIkIiIlEqTB:=[XTB,YTB,t=-infinity..infinity]:EqTC:=[XTC,YTC,t=-infinity..infinity]:Tangente au point stationnaire ACalculons la limite du taux d'accroissement en -1Limit((y(t)-y(-1))/(x(t)-x(-1)),t=-1)=limit((y(t)-y(-1))/(x(t)-x(-1)),t=-1);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkKiYsKEkidEdGKSIiIiokRi0hIiJGLiIiI0YuRi4sKEYvRi4tSSNsbkdGJjYjLCZGMUYuRi1GLkYuRi5GLkYwL0YtRjAjRjEiIiQ=On en d\351duit donc une tangente horizontale au point de A param\350tre -1XTA:=x(-1)+t;YTA:=y(-1)+2*t/3;NiM+SSRYVEFHNiIsJkkidEdGJSIiIiEiIkYoNiM+SSRZVEFHNiIsJiEiIyIiIkkidEdGJSMiIiMiIiQ=EqTA:=[XTA,YTA,t=-infinity..infinity]:Branches Infinies \351ventuelles en -2, 0 et +infinityEtude en -2^+Limit('x'(t),t=-2,right)=limit(x(t),t=-2,right),Limit('y'(t),t=-2,right)=limit(y(t),t=-2,right) ;NiQvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkieEdGKTYjSSJ0R0YpL0YuISIjSSZyaWdodEdGKSwkSSlpbmZpbml0eUdGJyEiIi8tRiU2JS1JInlHRilGLUYvRjEjISImIiIjD'o\371 une branche infinie lorsque t->-2^+, il s'agit d'une asymptote horizontale d'\351quationXA1:=t;YA1:=-5/2;NiM+SSRYQTFHNiJJInRHRiU=NiM+SSRZQTFHNiIjISImIiIjEqA1:=[XA1,YA1,t=-infinity..infinity]:Position Relative: pour cela on \351tudie le signe de y(tau)+5/2 pour tau proche de -2 (par valeurs sup\351rieures)assume(tau>-2):is(y(tau)+5/2>0);NiNJJmZhbHNlR0kqcHJvdGVjdGVkR0Yk#V\351rifions le \340 l'aide de son expression alg\351brique:factor(y(t)+5/2);NiMsJCooLCYiIiMiIiJJInRHNiJGJ0YnLCZGKEYmRidGJ0YnRighIiIjRidGJg==On a donc l'arc est "en dessous" de cette asymptote.Etude en 0^-Limit('x'(t),t=0,left)=limit(x(t),t=0,left),Limit('y'(t),t=0,left)=limit(y(t),t=0,left) ;NiQvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkieEdGKTYjSSJ0R0YpL0YuIiIhSSVsZWZ0R0YpLCRJKWluZmluaXR5R0YnISIiLy1GJTYlLUkieUdGKUYtRi9GMUYyD'o\371 une branche infinie lorsque t->0^-, Calculons la limite du taux y/xLimit('y'(t)/'x'(t),t=0,left)=limit(y(t)/x(t),t=0,left);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlKiYtSSJ5R0YpNiNJInRHRikiIiItSSJ4R0YpRi4hIiIvRi8iIiFJJWxlZnRHRilGMA==La courbe admet donc une direction asymptotique la droite d'\351quation y=x. Calculons alors la limite suivanteLimit('y'(t)-'x'(t),t=0,left)=limit(y(t)-x(t),t=0,left);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLCYtSSJ5R0YpNiNJInRHRikiIiItSSJ4R0YpRi4hIiIvRi8iIiFJJWxlZnRHRiksJC1JI2xuR0YmNiMiIiNGMw==Donc la courbe admet une asymptote oblique d'\351quation y=x-ln(2)... d'o\371 son \351quation param\351triqueXA2:=t;YA2:=t-ln(2);NiM+SSRYQTJHNiJJInRHRiU=NiM+SSRZQTJHNiIsJkkidEdGJSIiIi1JI2xuRzYkSSpwcm90ZWN0ZWRHRixJKF9zeXNsaWJHRiU2IyIiIyEiIg==EqA2:=[XA2,YA2,t=-infinity..infinity]:Position Relative: pour cela on \351tudie le signe de y(tau)-x(tau)+ln(2) pour tau proche de -2 (par valeurs sup\351rieures)assume(tau<0 and tau>-1):is(combine(y(tau)-x(tau)+ln(2))>0);NiNJJmZhbHNlR0kqcHJvdGVjdGVkR0YkV\351rifions le \340 l'aide de son expression alg\351brique:combine(y(t)-x(t)+ln(2));NiMsJi1JI2xuRzYkSSpwcm90ZWN0ZWRHRidJKF9zeXNsaWJHNiI2IywmIiIiRixJInRHRikjRiwiIiMhIiJGLUYsor ceci est du signe oppos\351 que la limite de (y(t)-x(t)+ln(2))/t en O^-Limit(('y'(t)-'x'(t)+ln(2))/t,t=0,left)=limit((y(t)-x(t)+ln(2))/t,t=0,left);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlKiYsKC1JInlHRik2I0kidEdGKSIiIi1JInhHRilGLyEiIi1JI2xuR0YmNiMiIiNGMUYxRjBGNC9GMCIiIUklbGVmdEdGKSNGMUY4On a donc l'arc est "au dessus" de cette asymptote.Etude en 0^+Limit('x'(t),t=0,right)=limit(x(t),t=0,right),Limit('y'(t),t=0,right)=limit(y(t),t=0,right) ;NiQvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLUkieEdGKTYjSSJ0R0YpL0YuIiIhSSZyaWdodEdGKUkpaW5maW5pdHlHRicvLUYlNiUtSSJ5R0YpRi1GL0YxRjI=D'o\371 une branche infinie lorsque t->0^+,Calculons la limite du taux y/xLimit('y'(t)/'x'(t),t=0,right)=limit(y(t)/x(t),t=0,right);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlKiYtSSJ5R0YpNiNJInRHRikiIiItSSJ4R0YpRi4hIiIvRi8iIiFJJnJpZ2h0R0YpRjA=La courbe admet donc une direction asymptotique la droite d'\351quation y=x. Calculons alors la limite suivanteLimit('y'(t)-'x'(t),t=0,right)=limit(y(t)-x(t),t=0,right);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlLCYtSSJ5R0YpNiNJInRHRikiIiItSSJ4R0YpRi4hIiIvRi8iIiFJJnJpZ2h0R0YpLCQtSSNsbkdGJjYjIiIjRjM=Donc la courbe admet une asymptote oblique d'\351quation y=x-ln(2)... d'o\371 son \351quation param\351triquePosition Relative: pour cela on \351tudie le signe de y(tau)-x(tau)+ln(2) pour tau proche de -2 (par valeurs sup\351rieures)assume(tau>0 ):is(combine(y(tau)-x(tau)+ln(2))>0);NiNJJXRydWVHSSpwcm90ZWN0ZWRHRiQ=V\351rifions le \340 l'aide de son expression alg\351brique:combine(y(t)-x(t)+ln(2));NiMsJi1JI2xuRzYkSSpwcm90ZWN0ZWRHRidJKF9zeXNsaWJHNiI2IywmIiIiRixJInRHRikjRiwiIiMhIiJGLUYsor ceci est du m\352me que la limite de (y(t)-x(t)+ln(2))/t en O^+Limit(('y'(t)-'x'(t)+ln(2))/t,t=0,right)=limit((y(t)-x(t)+ln(2))/t,t=0,right);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYlKiYsKC1JInlHRik2I0kidEdGKSIiIi1JInhHRilGLyEiIi1JI2xuR0YmNiMiIiNGMUYxRjBGNC9GMCIiIUkmcmlnaHRHRikjRjFGOA==On a donc l'arc est "au dessus" de cette asymptote.Etude en infinityLimit('x'(t),t=infinity)=limit(x(t),t=infinity),Limit('y'(t),t=infinity)=limit(y(t),t=infinity) ;NiQvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkLUkieEdGKTYjSSJ0R0YpL0YuSSlpbmZpbml0eUdGJ0YwLy1GJTYkLUkieUdGKUYtRi9GMA==D'o\371 une branche infinie lorsque t->infinity, Calculons la limite du taux y/xLimit('y'(t)/'x'(t),t=infinity)=limit(y(t)/x(t),t=infinity);NiMvLUkmTGltaXRHNiRJKnByb3RlY3RlZEdGJ0koX3N5c2xpYkc2IjYkKiYtSSJ5R0YpNiNJInRHRikiIiItSSJ4R0YpRi4hIiIvRi9JKWluZmluaXR5R0YnRjU=La courbe admet donc une branche parabolique dans la direction de l'axe des ordonn\351esEtude des variations de x et yplot(x,-2..infinity);LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdncDckJCEzNSsrKykqKioqKipcIyEjPSQhM19nKXolKjMnSE8hKkYsNyQkITNJM11sJVsmWyJcI0YsJCEzPXFdR11vY2RqRiw3JCQhMz87K0pyNChIWyNGLCQhM1dMV3ZZKT5HJGVGLDckJCEzU0NdJ3pYY1daI0YsJCEzJ1FrTCFlUTJdYUYsNyQkITNlSytpVz4lZlkjRiwkITNQMiYpb2InNE44JkYsNyQkITMnKlsrJHoiSCIqW0NGLCQhM0NiZW5jcnVNWUYsNyQkITNLbCtDIipRKT1WI0YsJCEzPzVRJHlQNyd6VUYsNyQkITMxKTRneSRlI3lSI0YsJCEzVVNiMSMpcCE+eSRGLDckJCEzIzM4IVsleW5QTyNGLCQhM1k1enZiTHBKTUYsNyQkITMtJz4/eG5eY0gjRiwkITNiUEp2YWNaV0hGLDckJCEzQmgtJzRkTnZBI0YsJCEzOFFCIVFHJ28wRUYsNyQkITNDNWpTXTErNEBGLCQhM1dgOjYhUjhPPiNGLDckJCEzJyplQiYpSGRZISo+RiwkITM1J1JjMUpXbiE+Riw3JCQhM18vIjRYIjM7ZD1GLCQhMyskeUxkSiRmcztGLDckJCEzISlcZTsqKmUmUXMiRiwkITM2JDRjXzAqNC06Riw3JCQhMy8/QkpfdG0qZSJGLCQhM1tTayF5KDRGejhGLDckJCEzKyF6ZWEhKXlhWCJGLCQhM0Ujby5oMzYhKUgiRiw3JCQhM1NUWk1MIUc+SyJGLCQhMytjVWJYaDFjN0YsNyQkITMzJHBJN0V4JCk9IkYsJCEzP1AzbDxpbWE3Riw3JCQhMyMzPCN6KmZlWDEiRiwkITNXNSFIUVRMW0giRiw3JCQhM2AmW09OUSpSMiUqISM+JCEzISlvMDA7PWYlUSJGLDckJCEzVyRHM0gnKUdgNylGW3IkITNTS0N1M0YqeWEiRiw3JCQhM00iMyFHVSRlSyVvRltyJCEzPi5zKkhXRm0iPUYsNyQkITMlKmZiI2U8UnReJkZbciQhM1kvNCpbdk5zRiNGLDckJCEzYVE1UDQrVSI+JUZbciQhMz80UzI4dyEzNCRGLDckJCEzZzBeJGZhJ2VJTkZbciQhM0slWypRUVdbXFBGLDckJCEzbXMiKlwjM2AocEdGW3IkITMnNE8weVkpcElaRiw3JCQhM3NSSzE+Jz4qM0FGW3IkITNlI0dbODteZy8nRiw3JCQhM3kxdGliaDNbOkZbciQhMzI4QEpUIUdQSihGLDckJCEzSylbY3M2eExvKSEjPyQhM2JAVSRIbExUYSlGLDckJCEzISkzKlIjeUUqZSk9Rml0JCEzY2dsPTpONSZwKkYsNyQkITNQT0dPQnI/TzVGaXQkITM4YzpsKlthSyQpKkYsNyQkITNHUncmW286Xyc9ISNAJCEzWzM5WCRvRCwoKipGLDckJCIzNiYzOFInKVI7aidGaXUkIjMnXCg0JlIrJUclKikqRiw3JCQiMyY0UW83YVxHXiJGaXQkIjN5ZXBWc14oKmYoKkYsNyQkIjMkZV9BNWw/QUAkRml0JCIzVXlTW1Y+PyZcKkYsNyQkIjNxcW14ZzxmNlxGaXQkIjN3IXosOCxdYkIqRiw3JCQiM1hnXEchKVJMNSQpRml0JCIzXndMTFpwYkooKUYsNyQkIjMtRCR6Kj53ITQ8IkZbciQiMytnYndfciN5QylGLDckJCIzX21ndT1LTm9CRltyJCIzOiIpZTohUk0wcSdGLDckJCIzLzNHXjwpKXpsTkZbciQiMy88JClIJ3AtS1EmRiw3JCQiM2ViYV1aKlFRIlxGW3IkIjMtKHlgdmdOMEYlRiw3JCQiMzkuIilceCF6PUUnRltyJCIzQEIwc3FlNFRPRiw3JCQiM2NHOnkqUWFhaChGW3IkIjMxWTsrcDNkXUtGLDckJCIzKVImXDEtKEghcCopRltyJCIzUzB3Xm1tdiIqSEYsNyQkIjMkW2kmb0tdTUY1RiwkIjM8RT09XUltPEdGLDckJCIzRWFaOyY0KHlkNkYsJCIzPzwrW3EycSJwI0YsNyQkIjMjPm9zUChbcCVSIkYsJCIzSkZxX2prITRhI0YsNyQkIjNXVSVbbjgsa24iRiwkIjNHcSI9bjRSKlJDRiw3JCQiMyMpZi0nSEhWXSI+RiwkIjMlb2cpPWU1RCRSI0YsNyQkIjNFeDsiRyYzayM+I0YsJCIzPyRwIzNaZjxtQkYsNyQkIjNWR2xQSTxPUUNGLCQiM2E3PkQ4PDtlQkYsNyQkIjNhRiNIeFpjenEjRiwkIjNLOTcnNE8zM08jRiw3JCQiM0lfSiIzVnVZJ0hGLCQiM0UtVThsMCo0UCNGLDckJCIza2hXUCRvS0RCJEYsJCIzM0kkSEpaTXJRI0YsNyQkIjNhMEVfdixeeU1GLCQiM0BGdD5vOFowQ0YsNyQkIjNIPyQ0NzhJUXUkRiwkIjNJPSZHWjk7elUjRiw3JCQiM0tFRk4pKkhVPlNGLCQiM106JCopSEghSGBDRiw3JCQiM28yZ04qUkYkZlVGLCQiMytgajdgbmN3Q0YsNyQkIjMqXFFOW3NJJT1YRiwkIjNPJSkpeT8tXkRdI0YsNyQkIjMjR0FNTCIpNGh5JUYsJCIzeiVcaiVIJCkqKkhERiw3JCQiM0NCdCIqeTopei8mRiwkIjNNJlsoZk4qW3NiI0YsNyQkIjN3JEc5dChmTixgRiwkIjNDI2ZRSyQzcSZlI0YsNyQkIjM/cTxlWl1vI2UmRiwkIjMvTGpEMSZRNmkjRiw3JCQiM2MhKkgkKUg8Wk5lRiwkIjN5Jio+WHAjKilvbCNGLDckJCIzLVRKUHBhUDBoRiwkIjMnXGAwUicqRygqcCNGLDckJCIzO1QpekhQWypcakYsJCIzVlZLSiNwOUx1I0YsNyQkIjNfRzd6YzZMPG1GLCQiMydIJHltZCwocHojRiw3JCQiMyEqUix0PXYiKm9vRiwkIjM5XCtNNDM4YUdGLDckJCIzOyhSciNleCo9OChGLCQiMy0wL0EmZm0/I0hGLDckJCIzSURXJDMsNCEqUShGLCQiMzcoW0hCYHAiKSpIRiw3JCQiMyEzPlBXbSE9ZXdGLCQiM2dXLCFbTHouNCRGLDckJCIzc1hsbWVcVTx6RiwkIjNVaUtHQ1JIJT4kRiw3JCQiM3dFIioqSHBSRD0pRiwkIjMlZTEoUSh5KD4/TEYsNyQkIjNpJCp5WlYiZmFXKUYsJCIzVzE7VEFjJzRaJEYsNyQkIjNHdCtyN1swKG8pRiwkIjMjKVtpI29jJ2VTT0YsNyQkIjMhZlYyUHJdUicqKUYsJCIza0dlYGp2UCkpUUYsNyQkIjM4dyVmJTMoNDtAKkYsJCIzcWNhJyo+IioqZj0lRiw3JCQiMz8kUlk7JmVtdiUqRiwkIjMteUYiKlIsTltZRiw3JCQiM051T2NpTi4tJypGLCQiMyM9KWUoKSo+YSsoXEYsNyQkIjNfYjRbdDdTRygqRiwkIjMhcC0rPiJmQCJSJkYsNyQkIjM9PDI2YjRJJ3oqRiwkIjNzeFZGISpbT29jRiw3JCQiM3d4L3VPMT9rKSpGLCQiM0VTOC9fWi81Z0YsNyQkIjNnZWBieC86KSopKkYsJCIzQTg2KUhhMUlBJ0YsNyQkIjNMUS1QPS41SyoqRiwkIjNnPz5meidHJilbJ0YsNyQkIjM/eXd4UV8yXCoqRiwkIjMhUV1TeW1YZmwnRiw3JCQiMzs+Xj1mLDBtKipGLCQiM29HeERUZSxub0YsNyQkIjM1UikpUT53YHUqKkYsJCIzLEUkR2AiXGEscUYsNyQkIjM5Z0Rmel0tJCkqKkYsJCIzPy0zQzNMJ0c8KEYsNyQkIjMxIUcnelJEXiIqKipGLCQiM0dPSFEoPUdaVShGLDckJCIiIiIiISQiM0F1aWhmISp6cioqRiwtJSZDT0xPUkc2JiUkUkdCRyQiIzUhIiIkRlxobEZlaGxGZmhsLSUqQVhFU1RJQ0tTRzYlNyUvJCEjNUZlaGxRKi1pbmZpbml0eTYiL0ZmaGxRIjBGX2lsL0ZjaGxRKWluZmluaXR5Rl9pbEZqaGwtJSVGT05URzYjJShERUZBVUxURy0lK0FYRVNMQUJFTFNHNiRRIUZfaWxGW2psLSUlVklFV0c2JDskISNEISIjRmNobDskITJpRkp5VCcqby4iISM7JCIyR3daYXZqcS4iRmZqbA==plot(y,-2..infinity);LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JDdkbzckJCEzNSsrKykqKioqKipcIyEjPSQhMykpKioqKlwpKioqKlw3JEYsNyQkITNCaC0nNGROdkEjRiwkITMmKWYiR1ZTJCkqR0hGLDckJCEzJyplQiYpSGRZISo+RiwkITNbJFxHTip5WHZGRiw3JCQhMyEpXGU7KiplJlFzIkYsJCEzKUc4P2s7YS1qI0YsNyQkITMrIXplYSEpeWFYIkYsJCEzVCwnUVRwMyFIREYsNyQkITNTVFpNTCFHPksiRiwkITNpUG5ENFAiUl0jRiw3JCQhMzMkcEk3RXgkKT0iRiwkITNIS3IneVQmPi5ERiw3JCQhMyMzPCN6KmZlWDEiRiwkITNjSV0jPTIuQmAjRiw3JCQhM2AmW09OUSpSMiUqISM+JCEzdzEsJz1ibTtnI0YsNyQkITNXJEczSCcpR2A3KUZVJCEzdiRRVl4oPmBORkYsNyQkITNNIjMhR1UkZUslb0ZVJCEzb0NgLCkpW2ZuSEYsNyQkITMlKmZiI2U8UnReJkZVJCEzJT48bipvXHIkUSRGLDckJCEzYVE1UDQrVSI+JUZVJCEzK0wmRyxjJipwOSVGLDckJCEzZzBeJGZhJ2VJTkZVJCEzdT9uJEchKm8neVpGLDckJCEzbXMiKlwjM2AocEdGVSQhM1RTLGstIylHUWNGLDckJCEzc1JLMT4nPiozQUZVJCEzL1QwRSRlYEZkJ0YsNyQkITN5MXRpYmgzWzpGVSQhMyF6JVwnSGt6L2MoRiw3JCQhM0spW2NzNnhMbykhIz8kITNNKmY+ZyY+TDwnKUYsNyQkITMhKTMqUiN5RSplKT1GXXEkITMnRzYzIlJlSylwKkYsNyQkITNQT0dPQnI/TzVGXXEkITNHSjBfXyM9VSQpKkYsNyQkITNHUncmW286Xyc9ISNAJCEzQ0c0XDptOnEqKkYsNyQkIjM2JjM4UicpUjtqJ0ZdciQiM09yXGZbbipRKikqRiw3JCQiMyY0UW83YVxHXiJGXXEkIjNfY1kqUl96enYqRiw3JCQiMyRlX0E1bD9BQCRGXXEkIjMpKVtdOnZRUSdbKkYsNyQkIjNxcW14ZzxmNlxGXXEkIjNTMyVwUXVjYEAqRiw3JCQiM1hnXEchKVJMNSQpRl1xJCIzYydHIVIocCg+dycpRiw3JCQiMy1EJHoqPnchNDwiRlUkIjNIdC93TU4lRzkpRiw3JCQiM3kmcGkkPi9qcDxGVSQiMz9IUlZgUkFDc0YsNyQkIjNfbWd1PUtOb0JGVSQiM3ZOVSNcRF8+TSdGLDckJCIzR1AlSCI9ZzJuSEZVJCIzMCVRJ0dcJikpZV0mRiw3JCQiMy8zR148KSl6bE5GVSQiM2V3eWE9c1tRWkYsNyQkIjNlYmFdWipRUSJcRlUkIjNfJjNDKCp5eTZuJEYsNyQkIjM5LiIpXHghej1FJ0ZVJCIzSkJvIjNIWDk3JEYsNyQkIjNjRzp5KlFhYWgoRlUkIjNQeSM9cUolSDhHRiw3JCQiMylSJlwxLShIIXAqKUZVJCIzMGNjNz4qMyFSRUYsNyQkIjMkW2kmb0tdTUY1RiwkIjNrJ28oRyJvYiNbREYsNyQkIjNFYVo7JjQoeWQ2RiwkIjNvPykqZnNWTTJERiw3JCQiMzM9KG9XKTRDdzdGLCQiM01NPydbYVIwXSNGLDckJCIzIz5vc1AoW3AlUiJGLCQiMyQ+M01OZzZdXiNGLDckJCIzV1UlW244LGtuIkYsJCIzJEdSKDMkSGQlM0VGLDckJCIzIylmLSdISFZdIj5GLCQiM2IvPVZTPCY0dCNGLDckJCIzRXg7IkcmM2sjPiNGLCQiM1k4Vy1kPUQwSEYsNyQkIjNWR2xQSTxPUUNGLCQiMzUnUUwlSDM7eklGLDckJCIzYUYjSHhaY3pxI0YsJCIzO1p2dlUpZlxHJEYsNyQkIjNJX0oiM1Z1WSdIRiwkIjMtVSlcQHY4PFwkRiw3JCQiM2toV1Akb0tEQiRGLCQiMyR6KXk/KnoqKmVyJEYsNyQkIjNhMEVfdixeeU1GLCQiM0lpJW8pSG5wRlJGLDckJCIzSD8kNDc4SVF1JEYsJCIzbSYpNGpvTT1oVEYsNyQkIjNLRUZOKSpIVT5TRiwkIjMhPj5RcFFnIjNXRiw3JCQiM28yZ04qUkYkZlVGLCQiMzUqNGxtTnBoaSVGLDckJCIzKlxRTltzSSU9WEYsJCIzW25fM0NtQmtbRiw3JCQiMyNHQU1MIik0aHklRiwkIjNPciIqUlBsNDVeRiw3JCQiM0NCdCIqeTopei8mRiwkIjMwQHBmIkdNU0wmRiw3JCQiM3ckRzl0KGZOLGBGLCQiM1c1XVJzVDdaYkYsNyQkIjM/cTxlWl1vI2UmRiwkIjNhTjRtUWo5KXkmRiw3JCQiM2MhKkgkKUg8Wk5lRiwkIjNOKCkpKioqUllgM2dGLDckJCIzLVRKUHBhUDBoRiwkIjMtPCd6WCZcbVppRiw3JCQiMztUKXpIUFsqXGpGLCQiM3N2dHI2RWdua0YsNyQkIjNfRzd6YzZMPG1GLCQiM3krMkIsXlM2bkYsNyQkIjMhKlIsdD12Iipvb0YsJCIzdmgkUiF5PiNRJXBGLDckJCIzOyhSciNleCo9OChGLCQiM1MoNGImPj1wKj0oRiw3JCQiM0lEVyQzLDQhKlEoRiwkIjMwIz0nPjJId0t1Riw3JCQiMyEzPlBXbSE9ZXdGLCQiM3VZVyNSWGApKm8oRiw3JCQiM3NYbG1lXFU8ekYsJCIzViYpKVJHb2ooUnpGLDckJCIzd0UiKipIcFJEPSlGLCQiMy8tXlYlPUR1PilGLDckJCIzaSQqeVpWImZhVylGLCQiM11ZZy0jXCV6YSUpRiw3JCQiM0d0K3I3WzAobylGLCQiMz88LVhfKClvI3ApRiw3JCQiMyFmVjJQcl1SJyopRiwkIjN3bTZMMU5zbSopRiw3JCQiMzh3JWYlMyg0O0AqRiwkIjNbcGInZilHJEdAKkYsNyQkIjM/JFJZOyZlbXYlKkYsJCIzeTpvQigpZi13JSpGLDckJCIzX2I0W3Q3U0coKkYsJCIzdzVjLl44WEcoKkYsNyQkIiIiIiIhRltibC0lJkNPTE9SRzYmJSRSR0JHJCIjNSEiIiRGXWJsRmRibEZlYmwtJSpBWEVTVElDS1NHNiU3JS8kISM1RmRibFEqLWluZmluaXR5NiIvRmVibFEiMEZeY2wvRmJibFEpaW5maW5pdHlGXmNsRmlibC0lJUZPTlRHNiMlKERFRkFVTFRHLSUrQVhFU0xBQkVMU0c2JFEhRl5jbEZqY2wtJSVWSUVXRzYkOyQhI0QhIiNGYmJsOyQhMlsyIXl1ZiZwLiIhIzskIjEjKTRCOC4lKlI1ISM6varx:=D(x)(t)/abs(D(x)(t)):vary:=D(y)(t)/abs(D(y)(t))/2:On trace en rouge le signe x' et en vert le signe de y'plot([varx,vary],t=-2..5,discont=true,thickness=[3,3]);LSUlUExPVEc2Ji0lJ0NVUlZFU0c2JTdjbzckJCEzMSsrKyEqKioqKioqPiEjPCQiIiIiIiE3JCQhMylcSV41Iio+dSU9RixGLTckJCEzQiVIKj4rM205PEYsRi03JCQhM3dbVT8mSGZgYyJGLEYtNyQkITNNXSo9SDdvXVQiRixGLTckJCEzKVwnNE1lN1xsN0YsRi03JCQhMz9gTC0zRzonPiJGLEYtNyQkITNZVGRxZFYibzciRixGLTckJCEzKTRwdEpROzQ0IkYsRi03JCQhM2FTO2szJT1dMCJGLEYtNyQkITNKOmNQQCVwcS4iRixGLTckJCEzMyFmNFRWPyI+NUYsRi03JCQhM054bFpTZjk1NUYsRi03JCQhM2prTiVvV3I2KyJGLEYtNyQkITN3JGVxLStVbycqKiEjPSQhIiJGLzckJCEzOD9iNUsmcD4jKipGWkZlbjckJCEzXWMvJVIxKDR4KSpGWkZlbjckJCEzKVJSdmRmQ0EkKSpGWkZlbjckJCEzPyd6LU4nKTQoKjMqRlpGZW43JCQhM1MpPkk3OCY+WiQpRlpGZW43JCQhMydIYDZdPEdwJ29GWkZlbjckJCEzPCRSLkVtIkhXYEZaRmVuNyQkITNsdWZvJGZfSislRlpGZW43JCQhMzMuJjQrbFpMXCNGWkZlbjckJCEzcWtBdkBJVnQoKiEjPkZlbjckJCIzSDtxUGR6Mk9bRmVwRmVuNyQkIjMjZjVmVU4iSDU9RlpGZW43JCQiMydIN0FcVVl5USRGWkZlbjckJCIzIlwpSCwpXFVVcyVGWkZlbjckJCIzP3EpMzckKSl5eWlGWkZlbjckJCIzbU9rI1F1RFtsKEZaRmVuNyQkIjNRW2ozRmpiayIqRlpGZW43JCQiMz1nS0QnbzwtMSJGLEZlbjckJCIzKHBJKFwyJD0tQCJGLEZlbjckJCIzP0RiI0hxbHpNIkYsRmVuNyQkIjM9LTsjeihbYSdcIkYsRmVuNyQkIjMvR2hLJClvKDNsIkYsRmVuNyQkIjNtUHZyWkxBJnkiRixGZW43JCQiM3NIKGYoeUF4ZD1GLEZlbjckJCIzekA+ISk0N0tJPkYsRmVuNyQkIjNRcUkoZnVlIVw+RixGZW43JCQiMz8+VTkjRyd6bj5GLEZlbjckJCIzXSR6SC0wbHIoPkYsRmVuNyQkIjMtb2BKPVFgJyk+RixGZW43JCQiMzFiImVCPz03Kj5GLEZlbjckJCIzS1U0UydlLWYqPkYsRmVuNyQkIjNkSFBXcXBlKz9GLEYtNyQkIjNoO2xbYThGMD9GLEYtNyQkIjNDOSlHb1VZRi8jRixGLTckJCIzVzY2PCpcQC0zI0YsRi03JCQiMylIT1RNZlhOOiNGLEYtNyQkIjNgOTtyKG9wb0EjRixGLTckJCIzaTlSal0kZihvQkYsRi03JCQiM0VeUXlIT0lFREYsRi03JCQiMyNcJlxtclQneW0jRixGLTckJCIzbipwOmNFNSE+R0YsRi03JCQiM1cyPFkiNHJmJkhGLEYtNyQkIjMpXDgxLVgwZDUkRixGLTckJCIzISkpPjhGIlFmWUtGLEYtNyQkIjNHIltwbXVpUVIkRixGLTckJCIzdERAI3ovWHlgJEYsRi03JCQiMyVbWFtQPCJlKW8kRixGLTckJCIzOEZGTHl6dkxRRixGLTckJCIza00xUEhBQSMpUkYsRi03JCQiMz9tPlhAclhIVEYsRi03JCQiM0djLjAncF1aRSVGLEYtNyQkIjM7c0BUK0MiKT5XRixGLTckJCIzV3l0SFA5XWVYRixGLTckJCIzSG5XSHhHUDFaRixGLTckJCIzTXlBTThaIXolW0YsRi03JCQiIiZGL0YtLSUqVEhJQ0tORVNTRzYjIiIkLSUmQ09MT1JHNiYlJFJHQkckIiM1RmZuJEYvRmZuRmp5LUYmNiU3Y283JCQhIiNGLyQiMysrKysrKysrXUZaNyQkITNHTEwkMyMqPnUlPUYsRmF6NyQkITNvbTt6NDNtOTxGLEZhejckJCEzUUxMZS8kZmBjIkYsRmF6NyQkITNQTEwzSyJvXVQiRixGYXo3JCQhM11tO0huN1xsN0YsRmF6NyQkITMnKioqXChvIkc6Jz4iRixGYXo3JCQhM1dMJGVrTzlvNyJGLEZhejckJCEzKytdKD1SOzQ0IkYsRmF6NyQkITNjbTtIPCU9XTAiRixGYXo3JCQhMyYpKioqKioqSCVwcS4iRixGYXo3JCQhMzhMJDNGVz8iPjVGLEZhejckJCEzeCpcaSFcZjk1NUYsRmF6NyQkITNUbW1UYjk8LDVGLEZhejckJCEzSyhcUGYzVW8nKipGWiQhMysrKysrKysrXUZaNyQkITNrSiQzeGhwPiMqKkZaRl1dbDckJCEzJ2Y7eiVccjR4KSpGWkZdXWw3JCQhMzoqKipcN29DQSQpKkZaRl1dbDckJCEzVWxtInolKjQoKjMqRlpGXV1sNyQkITNxSkxlOV8+WiQpRlpGXV1sNyQkITMtKytEYyNHcCdvRlpGXV1sNyQkITNsa21tVDxIV2BGWkZdXWw3JCQhMy9LTCQzbl9KKyVGWkZdXWw3JCQhMyFwKioqKlxzWkxcI0ZaRl1dbDckJCEzXSQqKioqKlxQVnQoKkZlcEZdXWw3JCQiMyhbLCsrRHhnJFtGZXBGXV1sNyQkIjNebm1UJkciSDU9RlpGXV1sNyQkIjM5TkxMZWoleVEkRlpGXV1sNyQkIjNnT0xMTENDQ1pGWkZdXWw3JCQiMy0sK3ZvKCl5eWlGWkZdXWw3JCQiMyFHTExMb0RbbChGWkZdXWw3JCQiM0VvOy93NHA0JSlGWkZdXWw3JCQiM3UuK3ZvaWJrIipGWkZdXWw3JCQiMzwvXTcuOSdSXypGWkZdXWw3JCQiM2cvK11QbE8kKSkqRlpGXV1sNyQkIjNOISlvSHpASEcqKkZaRl1dbDckJCIzKVx2JDRAeUB0KipGWkZdXWw3JCQiMydIMSpHWVYiPSsiRixGYXo3JCQiM2FdKG8vInBJMTVGLEZhejckJCIzWkQiRylRP0g6NUYsRmF6NyQkIjNSK3Y9bnJGQzVGLEZhejckJCIzWl1pIVJVWkEvIkYsRmF6NyQkIjNhK11pIW88LTEiRixGYXo3JCQiMzduVE4iKnpATjZGLEZhejckJCIzcUxMMy0kPS1AIkYsRmF6NyQkIjNrTCQzeHBsek0iRixGYXo3JCQiM2dtbSJIKFthJ1wiRixGYXo3JCQiM3dtO2F5bygzbCJGLEZhejckJCIzPytdN1ZMQSZ5IkYsRmF6NyQkIjMncG07YT9ALiQ+RixGYXo3JCQiMykqKioqKipcXEAtMyNGLEZhejckJCIzUSsrdiRvcG9BI0YsRmF6NyQkIjNjK10ob01mKG9CRixGYXo3JCQiMyMpKioqXGlpLmpfI0YsRmF6NyQkIjMlR0xMJG9UJ3ltI0YsRmF6NyQkIjMnMysrREU1IT5HRixGYXo3JCQiM01tO2EpM3JmJkhGLEZhejckJCIzKjQrK3ZXMGQ1JEYsRmF6NyQkIjM7TCQzLSJRZllLRixGYXo3JCQiM0MrXVBXRidRUiRGLEZhejckJCIzW0xMJGUvWHlgJEYsRmF6NyQkIjNtKipcKD08ImUpbyRGLEZhejckJCIzJXltbW0oenZMUUYsRmF6NyQkIjMtbm0iekFBQSlSRixGYXo3JCQiM0xNJDMtN2QlSFRGLEZhejckJCIzIzQrK11wXVpFJUYsRmF6NyQkIjMkUUwkZSpSNyk+V0YsRmF6NyQkIjMncG1tbVYsJmVYRixGYXo3JCQiMzwrXShvKEdQMVpGLEZhejckJCIzZytdNzhaIXolW0YsRmF6NyRGXnlGYXpGYHktRmV5NiZGZ3lGanlGaHlGanktJStBWEVTTEFCRUxTRzYnUSJ0NiJRIUZbaGwtJSVGT05URzYkJSpIRUxWRVRJQ0FHRml5JStIT1JJWk9OVEFMR0ZhaGwtJSVWSUVXRzYkOyQhIz9GZm4kIiNdRmZuOyQhJC8iRmB6JCIkLyJGYHo=Support de la courbetotal:=[x(t),y(t),t=-2..infinity]:plot([total,EqTA,EqTB,EqTC,EqA1,EqA2],-5..5,-10..10,color=[blue,black,black,black,green,green],thickness=[3,1,1,1,2,2,2]);LSUlUExPVEc2Ki0lJ0NVUlZFU0c2JTdbcDckJCEzZSVbTmZKTjNcJiEjPCQhMyN6Qnc2NigqW1wjRiw3JCQhM1skKSlcX2ozJSp6JUYsJCEzXzx0Iz4lZiEpKlsjRiw3JCQhM11QZCJ5I2VuJlIlRiwkITMnUSJwaTdtcyVbI0YsNyQkITMvMXhvenp0NFRGLCQhMyl5MkRgQ2YnekNGLDckJCEzX050VWx4ejJQRiwkITM1XyUpeikqM2NwQ0YsNyQkITNQVkJ0Rioqb0JNRiwkITMneiUpW28iPl5mQ0YsNyQkITMmMygzODFjX0RJRiwkITMqWyQ+MWNpY1JDRiw3JCQhM01tRlUmcGFgdSNGLCQhMzU7IypcejQkKT5DRiw3JCQhM1lAIz1XYCFlYkJGLCQhMzFKIzRwLkg1USNGLDckJCEzW3lVLE0hXFgzI0YsJCEzMXEvZUNuPVZCRiw3JCQhM3MudHI6MipbdiJGLCQhMzFeZFsqSCkqKXpBRiw3JCQhMylSV2k/WCZSRDpGLCQhMzZETCdlSm0uQSNGLDckJCEzJyk9bHpYI3o7PyJGLCQhM3I4PiRRTC5VNSNGLDckJCEzVWAhXCVwKTMlUTVGLCQhM0pRV2picD9CP0YsNyQkITMoKm9OIVIoSHQuNUYsJCEzVDBKOU1qYi0/Riw3JCQhM0xLNGReTW4yNkYsJCEzdSp5ei9DTDgzI0YsNyQkITNZcVFrXT5JYDlGLCQhM1s+KzUyZjJ1QkYsNyQkITNLd3NTJDNZRVojRiwkITN3Oi9SVGtmPExGLDckJCEzIXo3TmV2ZVh5JEYsJCEzI0dEYSxuYmBlJUYsNyQkITMhemplMlppX1coRiwkITMrNEAkWyNHTCk+KUYsNyQkITMvVjV0YUN2dDghIzskITNlc3psbyh5a1ciRltyNyQkITM1WEttNkhnZmxGW3IkITNTYmE8RiJwJ0htRltyNyQkITN1ZT9aYENWKj4iISM6JCEzcCdHSnVHMGs/IkZmcjckJCEzM0JUYFsmNFpwJ0ZmciQhMygqNEVVeSVbO3EnRmZyNyQkIjMpSD5BdWhoPSo9RmZyJCIzY2pASDJuJlwpPUZmcjckJCIzemxiSSopPlpLJClGW3IkIjNjPXFqTVV3aiMpRltyNyQkIjNlbnlCRDApPidSRltyJCIzNWI2MCEpKWVSKlFGW3I3JCQiM19KZEdfLEU7RUZbciQiM0E0Rng/IkgqW0RGW3I3JCQiM1VSJjRwOk9uZCJGW3IkIjN5O1AzRicqejU6RltyNyQkIjMlKUcmRyQ0KlI5OSJGW3IkIjMrUlEiXD46cDIiRltyNyQkIjNdN2ZfcndlaGdGLCQiM0EjZiQ0PnNSbmFGLDckJCIzajJCJSopUTI/TCVGLCQiM3cmNEI7eSp5IXokRiw3JCQiMztvb3MpcHdHIkhGLCQiM20zUldNaTooXCNGLDckJCIzeWtPdE1gUyRSI0YsJCIzUSUzNWk4Mjc2I0YsNyQkIjNXRDw6PDFPYEBGLCQiM3YmPk0jKVx2ZSsjRiw3JCQiM1ptKD42PERGLiNGLCQiMyR6bDBGRzQ/LCNGLDckJCIzc0YjR3ZGXj4mPkYsJCIzT2ZTP01ldyczI0YsNyQkIjMoXG9nbSUzZzk+RiwkIjNLS1ghPlJoWj0jRiw3JCQiMz9CVXFkMiVIKj1GLCQiMyRlQSI9JlssVUsjRiw3JCQiM1tYV2dxJEhsKT1GLCQiM1NaWUtqJ0dMWSNGLDckJCIzI1xEYCgpb1knKSk9RiwkIjMmNCdwdXR5J3ppI0YsNyQkIjNVMFUyX0N6Jyo9RiwkIjMvKCpcPSw1UCR6I0YsNyQkIjM6UEhbeXZxND5GLCQiM1FPOjZSKT5GKEhGLDckJCIzaU5XXyU0eFYjPkYsJCIzYHQxYCRRZEA5JEYsNyQkIjMneSZ6dzpITFU+RiwkIjNhKipmdnVuJSpHTEYsNyQkIjNrUllPTUFqaT5GLCQiM2pqY0g0JEdsXyRGLDckJCIzIUglSFotTUQiKT5GLCQiM2YtPTImW040cSRGLDckJCIzWCRbd3ciMy8tP0YsJCIzT0YpKlEqSCpRIipRRiw3JCQiMyNHO1ZObSkqUi0jRiwkIjMrITMuXUhnKzQlRiw3JCQiMykzLSZbWyIqelg/RiwkIjNHJUd6LzZlakclRiw3JCQiMzd2ZWxtMWNvP0YsJCIzXzIiZSMqUXo5XCVGLDckJCIzdUQpXF0hMyJwNCNGLCQiMzNyPGhnSV1bWkYsNyQkIjMqemIiZTo5XkRARiwkIjNYOy9RNjZwNV1GLDckJCIzI1sjKjM3PCR5ZkBGLCQiM0kwQUNaVyxJYEYsNyQkIjNfVFYrYTxsJT4jRiwkIjM/XC5BTnIoPW0mRiw3JCQiMyVlJSpwaDd3dkIjRiwkIjN3S1I1NlppIjMnRiw3JCQiM10jPUN2ay9MRyNGLCQiM3ZIbiQ+U0BUYSdGLDckJCIzLDR0THdLbFBCRiwkIjM2ckd1P3NsO3JGLDckJCIzRSdIZmhpTiYpUiNGLCQiM1VJUEs0a1oheihGLDckJCIzQ3BtW3BNSXNDRiwkIjMlPkEyK1hmdWwpRiw3JCQiM1ttKSopKVJeVmJERiwkIjNRMzAoKlJVaTIoKkYsNyQkIjM7QUttRyNlaGwjRiwkIjMpUXkqRygpUl80NkZbcjckJCIzY0hwOydcc254I0YsJCIzUzhGUTlpSyVIIkZbcjckJCIzJSpSPnheI3BDIkhGLCQiM3YxaFZndiYpSDpGW3I3JCQiMydwWTxnMC0yNiRGLCQiM0QrKSkpPk4hZk4+RltyNyQkIjNFZGxxKEgqeltMRiwkIjM5ISozeGBsdlNERltyNyQkIjNENSFIITQsbz1QRiwkIjNlSGRbIT0kKXAiUUZbcjckJCIzaT1sbWxML3dSRiwkIjMzbT4nZUdSdi0mRltyNyQkIjMjb2RYTVJSJlJWRiwkIjM5Mk8/W0g7bHRGW3I3JCQiM3pJP20xVD48WUYsJCIzWEkiUTg1RCU+KSpGW3I3JCQiM1pHT0Z0dmU3XUYsJCIzTUYyZyEqKUdHWiJGZnI3JCQiM3NkIW9OLjxfSCZGLCQiMyFmaSgpZkNLUCc+RmZyNyQkIjNTejx5TSM9Y3AmRiwkIjMjXFgib0pmYlhIRmZyNyQkIjMta2JXJTRrMilmRiwkIjNbJUhOWzUpUUZSRmZyNyQkIjNnMndTUCxwJFEnRiwkIjNpOEdnUTQxIiplRmZyNyQkIjMlUl5OWWcsLG4nRiwkIjMrKmUraCxRWiZ5RmZyNyQkIjMnPUIvM1ImSHVxRiwkIjMhR2MjW1QnNCN5NiEjOTckJCIzNT5VXEowPG14RiwkIjNPemklKTQhPWtOI0ZnY2w3JCQiM3dnO0snM2k+NChGZnIkIjItKysrISoqKioqKioqIiQiSC0lKlRISUNLTkVTU0c2IyIiJC0lJkNPTE9SRzYmJSRSR0JHJCIiISEiIkZbZWwkIiM1Rl1lbC1GJjYlN2FvNyQkITItKysrISoqKioqKioqRmJkbCQhM3UqKioqKioqZm1tbSciJCFINyQkITMrcU52YjozcDlGZ2NsJCEzbm0vcHIuQDIpKkZmcjckJCEzK115d3l4U110RmZyJCEzTUxfJWU9ME8iXEZmcjckJCEzTUxfJWU9ME8hXEZmciQhM09iLEJkTVMjRyRGZnI3JCQhMytEUlEqKVE/IW8kRmZyJCEzbTtFI0hmLW9ZI0ZmcjckJCEzbTtFI0hmLW9YI0ZmciQhM294XWhHPD9eO0ZmcjckJCEzdVY+cFc+NVg9RmZyJCEzJGVIaGtILE1DIkZmcjckJCEzciJIaGtILE1CIkZmciQhM2V4XzJWJzNnTilGW3I3JCQhM3M9KGZNczRiRipGW3IkITM5emtJI1sxcUonRltyNyQkITNhZWtJI1sxcUAnRltyJCEzISlRd2BAVit5VUZbcjckJCEzR1opSDwnW3YobyVGW3IkITMxSks6VEtdZUtGW3I3JCQhM2NPWjAhR09wSCRGW3IkITM5QylwTCYzSEpCRltyNyQkITMrVkI8czFBYERGW3IkITNMJipbNlsvW049RltyNyQkITNYaUpYd2NfNTxGW3IkITM9M0BJJXkkb3Q3RltyNyQkITMzTT93czBzJ0giRltyJCEzayMqb3Vecjh5KipGLDckJCEzUWBXKDMleixgNUZbciQhMyE+LWoiUkhYYCQpRiw3JCQhM3FvLTJpSGk7ISpGLCQhM11Yby8zYFRXdEYsNyQkITNHXywnSDsmXCUpeUYsJCEzY01NKD5XaicqZSdGLDckJCEzZGwhUnpXUHIrKEYsJCEzclZnaSlIZVorJ0YsNyQkITMlSEpoRFNiK0wnRiwkITNNM1VQby1QYGJGLDckJCEzSydcIjRdZkh3ZEYsJCEzYSgqNDErdD4lPSZGLDckJCEzUT9oS0dBJ2VQJkYsJCEzInB1XWJbVHMiXEYsNyQkITNJKysrIVt6JSkqXEYsJCEzR21tbScpSGxsWUYsNyQkITM1KysrK1UnPmwlRiwkITN4KioqKioqKnpVWVYlRiw3JCQhMy8rKys/RC49VkYsJCEzVioqKioqKno7LTdVRiw3JCQhM1NMTExqMHo5U0YsJCEzSWJiYnYuJyk0U0YsNyQkITMhcG1tbWExVWwkRiwkITNFNjY2SjVacFBGLDckJCEzPW5tbSdlVyhbTEYsJCEzIVtXV1dzSGVjJEYsNyQkITNTKysrNSg+TSpIRiwkITNnTExMdGslKkdMRiw3JCQhM1VubW0nKXAqKXlFRiwkITNHeXh4ZFlFPkpGLDckJCEzbCoqKioqKjRkIlFMI0YsJCEzIUdMTExaNSMqKUdGLDckJCEzKikqKioqKipIbkAwP0YsJCEzZW1tbSdbVyxuI0YsNyQkITNbbW1tbSJlQm0iRiwkITMkMzY2NjZzOlcjRiw3JCQhM3VtbW13cF1aOEYsJCEzJHl4eHhKcjtCI0YsNyQkITNbTExMTHUqeSsiRiwkITNeYmJiYlxFMD9GLDckJCEzWVlMTExjUV5sISM9JCEzV2NiYnZCNHE8Riw3JCQhM0MzKysrJDQxWyRGZmBtJCEzJ1JMTEwmUlBsOkYsNyQkITMleVRMTExuM2siISM+JCEzXyopKSkpKVtDRlc4Riw3JCQiM1ElKioqKioqZjBBRSRGZmBtJCEzWCsrK2dIJmU2IkYsNyQkIjNTJCkqKioqKj5rVGgnRmZgbSQhMzpYTExMMCpRIyopRmZgbTckJCIzVSgpKioqKipcY3QmKSpGZmBtJCEzP1ZMTExCd2huRmZgbTckJCIzZSkqKioqKmZvJGVNIkYsJCEzJTQsKytnKDNoVkZmYG03JCQiMz9LTEw4UVNwO0YsJCEzRiZ5eHhkdVI/I0ZmYG03JCQiM3AqKioqKioqZiEpWywjRiwkIjNIJ1wqKioqKioqUj8qKiEjPzckJCIzJWZtbW0iUiR6SyNGLCQiM3kvNjY2aEEnPSNGZmBtNyQkIjNzKioqKioqelE9cUVGLCQiM2dHTExMRCp5WSVGZmBtNyQkIjNtSkxMQldAIypIRiwkIjMsNkFBQUd3OW1GZmBtNyQkIjMhUWJHaGMjR2VMRiwkIjMtI3BCdjU8XzAqRmZgbTckJCIzeW0iXFhHYXV5JEYsJCIzXVclKnAqPU87PiJGLDckJCIzKFtoZScpR0l4TCVGLCQiM0VWZDVmb1tlOkYsNyQkIjNJcyF5Xm4lPS1dRiwkIjMoW3I9LFhjOSsjRiw3JCQiM1tsRTcnSEh4KGVGLCQiM3F3PDNrRzomZSNGLDckJCIzRkMrc2ElZjQvKEYsJCIzPTsrW08nUjFPJEYsNyQkIjMsYWttTC1lPyYpRiwkIjNNcDQ2KltgcU0lRiw3JCQiM3EtQFozal0xNkZbciQiM3k7UyIpKlF2TC8nRiw3JCQiM3dvKCk0QiI0YlsiRltyJCIzS2UlZTEjMzFxJilGLDckJCIzRzMhKm9dZihSRyNGW3IkIjMhKVEkZi9JPCQqUSJGW3I3JCQiM3UiKkgjKSlRbzQvJEZbciQiM0UlKj4pZSMqeVIqPUZbcjckJCIzVXZCVSYpelAtWEZbciQiM1EkZSJHISo+RG9HRltyNyQkIjN2bUpjISlSXU9nRltyJCIzT3goM1BsLTUqUUZbcjckJCIzJDN2VzMoZnYvIipGW3IkIjN2bUpjISlSXU9mRltyNyQkIjNOTEU2J3ordEAiRmZyJCIzc2F2VDJgKyMpekZbcjckJCIzPF0qb1Q+XjQkPUZmciQiM05MRTYneit0PyJGZnI3JCQiM1okR0RBZixZVyNGZnIkIjNKQU5baDVTOztGZnI3JCQiM00rekwpUS0+biRGZnIkIjNxbV9BI2YsWVYjRmZyNyQkIjNNTC9YJT0uIyoqW0ZmciQiM1FicCdINy1HRCRGZnI3JCQiM1lcY253WiFRTihGZnIkIjN5Sy9YJT0uIyopW0ZmcjckJCIzISpIXkxiNHdyOUZnY2wkIjNjbDMhKm9qUyl6KkZmcjckRmBkbCQiM3UqKioqKioqZm1tbSdGaGVsLUZkZGw2IyIiIi1GaGRsNiZGamRsRltlbEZbZWxGW2VsLUYmNiU3YW83JEZcW24kIiIjRlxlbDckJCIzSltyZCVcJz4zKSpGZnJGZ1tuNyQkIjNUOT50MzhmOVxGZnJGZ1tuNyQkIjNXT282IWUqUSRHJEZmckZnW243JCQiM3UoSDRlcil5bkNGZnJGZ1tuNyQkIjN3ZTxdXnk9XztGZnJGZ1tuNyQkIjMhcCh6TT51UVc3RmZyRmdbbjckJCIzSykzVT4oKXBlTylGW3JGZ1tuNyQkIjMpKSpHdDZybm9LJ0ZbckZnW243JCQiM19cV1NdYid5RyVGW3JGZ1tuNyQkIjNdVSstcVdPb0tGW3JGZ1tuNyQkIjNCTm1CIzNfNk0jRltyRmdbbjckJCIzVTE8KXBuVGAlPUZbckZnW243JCQiM0c+Km9KLFhORyJGW3JGZ1tuNyQkIjNOKzovV1xuMjVGW3JGZ1tuNyQkIjMtSjYkeUFsP1gpRixGZ1tuNyQkIjNeYlxyJ2ZGSVcoRixGZ1tuNyQkIjNjVzprSWRGKW8nRixGZ1tuNyQkIjNzYFRIKGVxTDUnRixGZ1tuNyQkIjNNPUIvZEQpPmwmRixGZ1tuNyQkIjNjMiJIKCllNEdHJkYsRmdbbjckJCIzI3AmKT1VeGBlLCZGLEZnW243JCQiMz14Wkx2X0VrWkYsRmdbbjckJCIzeTQibycpM2JLYCVGLEZnW243JCQiM0w1Im8nb1JqNVZGLEZnW243JCQiM0lsT0FrRVozVEYsRmdbbjckJCIzRUAjeig+TDNvUUYsRmdbbjckJCIzIVtiN0osVVdtJEYsRmdbbjckJCIzZ1Y5K2koZXZVJEYsRmdbbjckJCIzSCkpZVdZcCh5QCRGLEZnW243JCQiMyNHVyw/d0F5KUhGLEZnW243JCQiM2d3Wkx2bnZvRkYsRmdbbjckJCIzJTNBeigqUiU9U0RGLEZnW243JCQiMyV5KWVXMU9HSUJGLEZnW243JCQiM15sT0FXcyhRNSNGLEZnW243JCQiM1dtT0FrWXFvPUYsRmdbbjckJCIzJ1JXLD9DJylSbSJGLEZnW243JCQiM2AqKnBiUFopR1ciRixGZ1tuNyQkIjNYNSJvJ1tfWTk3RixGZ1tuNyQkIjM9WFcsP00sNSoqRmZgbUZnW243JCQiM0NWVyw/Xyl5dShGZmBtRmdbbjckJCIzKTQ2Im8nWzVzTSZGZmBtRmdbbjckJCIzSyYpKWVXWSg0IT4kRmZgbUZnW243JCQiMyEzMDZvJykpPXApKUZhYW1GZ1tuNyQkITNzLytWQ0s1KzdGZmBtRmdbbjckJCEzYUdBbFkncDxbJEZmYG1GZ1tuNyQkITMoNDZUYiQqUidHY0ZmYG1GZ1tuNyQkITMpPmZVM0ElNHAhKUZmYG1GZ1tuNyQkITNdTTguLFItJDQiRixGZ1tuNyQkITNDTHdWcVgoKWY5RixGZ1tuNyQkITMoW2ddOTtXRyE+RixGZ1tuNyQkITNxbU9UdjBhJ1sjRixGZ1tuNyQkITM9MT4ieU1GP0UkRixGZ1tuNyQkITNNZkdXKzdXW1VGLEZnW243JCQhM3kxZjksSndXZkYsRmdbbjckJCEzVVouKj5gWzlaKUYsRmdbbjckJCEzKXlfI2ZyZ1h6OEZbckZnW243JCQhMz0kPTpxcDxUKT1GW3JGZ1tuNyQkITNJc1pUaDJSZUdGW3JGZ1tuNyQkITNrbT4lW1VUNilRRltyRmdbbjckJCEzLWNqcF5Ga0VmRltyRmdbbjckJCEzK1cyYnlTOXN6RltyRmdbbjckJCEzR19mQXRZSjE3RmZyRmdbbjckJCEzQ1RvZlFcVDo7RmZyRmdbbjckJCEzaiZlUSRwYWhMQ0ZmckZnW243JCQhM0l1LTMrZyI9RCRGZnJGZ1tuNyQkITNzXlBjaHFAKSlbRmZyRmdbbjckJCEzI1I9OWdDP3V6KkZmckZnW243JEZmZWxGZ1tuRl5bbkZhW24tRiY2JTdhbzckJCIzYyEqKT42TyVIJyk9RiwkITNlKioqKipcIyoqKioqXChGaGVsNyRGZ2huJCEzY3heIm87aCYpNCJGZ2NsNyRGZ2huJCEzeSgpZTJNZUkhWyZGZnI3JEZnaG4kITMrRFJRKilRP1hPRmZyNyRGZ2huJCEzKlElei48SGxGRkZmcjckRmdobiQhM11pPnBXPjU1PUZmcjckRmdobiQhM3VkKj0mZWtLXjhGZnI3JEZnaG4kITNYKG9mTXM0YiMqKUZbcjckRmdobiQhM28peSVmI0hLO2onRltyNyRGZ2huJCEzdFYpSDwnW3ZQVkZbcjckRmdobiQhMzUmUShIWWgiMz4kRltyNyRGZ2huJCEzQ181LzVBcVpARltyNyRGZ2huJCEzTWQjSFRdOioqZSJGW3I3JEZnaG4kITNPPSgpUnREJSp5JipGLDckRmdobiQhMytjX3ImSC9hWidGLDckRmdobiQhM0krJWVsYk13ayVGLDckRmdobiQhM18sRmJAc1k3TkYsNyRGZ2huJCEzKzksQXM4UGpFRiw3JEZnaG4kITM8KkhhZjNgYCsjRiw3JEZnaG4kITNbJSk0Iz5iVHZcIkYsNyRGZ2huJCEzQ0Enb0QnPkEjMyJGLDckRmdobiQhMyFHIWZXN24nKj15RmZgbTckRmdobiQhM0ktKysraGYpKVxGZmBtNyRGZ2huJCEzeSsrKys6dCpRI0ZmYG03JEZnaG4kIjN1dSoqKioqKjRjWjZGYWFtNyRGZ2huJCIzYSoqKioqXHhxISpRI0ZmYG03JEZnaG4kIjNNKSoqKioqKiozWCQ0JkZmYG03JEZnaG4kIjMzJyoqKioqKmY6V1EoRmZgbTckRmdobiQiM3EqKioqXDxfJFwrIkYsNyRGZ2huJCIzVioqKioqKmZzIzNDIkYsNyRGZ2huJCIzRSsrXTwjUScqXCJGLDckRmdobiQiMzMrK11fdTNZPEYsNyRGZ2huJCIzUCsrK3Y4Qi4/Riw3JEZnaG4kIjMlKioqKipcbihwJFJBRiw3JEZnaG4kIjMpKSoqKioqXCNwMiVcI0YsNyRGZ2huJCIzLSoqKipceGdrZUZGLDckRmdobiQiM1EqKioqXC1WJiopKUhGLDckRmdobiQiM1AqKioqKlxcJHBQS0YsNyRGZ2huJCIzZSoqKioqKj5hbSVcJEYsNyRGZ2huJCIzdykqKioqXEppZ3UkRiw3JEZnaG4kIjMxKioqKlxQPEkqKVJGLDckRmdobiQiMyUqKSoqKipca3gkZlVGLDckRmdobiQiMzsqKioqKipmRzAtWEYsNyRGZ2huJCIzQSsrK10vO2haRiw3JEZnaG4kIjNZKioqKlxQLyZmKlxGLDckRmdobiQiMyEpKioqKioqNHpqX19GLDckRmdobiQiMz0qKioqXDwzOyVcJkYsNyRGZ2huJCIzOTprZkM+cm9kRiw3JEZnaG4kIjMzdj1UODJmITQnRiw3JEZnaG4kIjMkNCdSXDt4SC5sRiw3JEZnaG4kIjNYYU5RMSZROysoRiw3JEZnaG4kIjMhKikqPjRzcEhld0YsNyRGZ2huJCIzPz0rLyJmPjJgKUYsNyRGZ2huJCIzUlQpXF88Ti9rKkYsNyRGZ2huJCIzM3hTTkooels6IkZbcjckRmdobiQiM193U0tVPThSOUZbcjckRmdobiQiMy5jbixqPil6LiNGW3I3JEZnaG4kIjNzVnNoIkhFZGcjRltyNyRGZ2huJCIzUiJ5bSEqWyR5LFBGW3I3JEZnaG4kIjNzdUJVJil6UF9bRltyNyRGZ2huJCIzeWlOOHlwY2ByRltyNyRGZ2huJCIzVVxaJTMoZnZhJSpGW3I3JEZnaG4kIjNiN25pJlI4ZFMiRmZyNyRGZ2huJCIzb2kqb1Q+XmYnPUZmcjckRmdobiQiMzVETUQiekVreSNGZnI3JEZnaG4kIjN0Q3lMKVEtcHEkRmZyNyRGZ2huJCIzYU9uXSNlYHlhJkZmcjckRmdobiQiM0paOF07MjIyNkZnY2w3JEZnaG4kIjNlKioqKipcIyoqKioqXChGaGVsRl5bbkZhW24tRiY2JTdTNyRGZGVsJCEzKysrKysrKytERiw3JCQhM0daKUg8J1t2KGUlRltyRltmbzckJCEzK1ZCPHMxQWBDRltyRltmbzckJCEzWGlKWHdjXzU7RltyRltmbzckJCEzM00/d3Mwcyc+IkZbckZbZm83JCQhM3RMWHUzJXosYCpGLEZbZm83JCQhM3FvLTJpSGk7ISlGLEZbZm83JCQhM0dfLCdIOyZcJSlvRixGW2ZvNyQkITNkbCFSeldQcisnRixGW2ZvNyQkITMlSEpoRFNiK0wmRixGW2ZvNyQkITNLJ1wiNF1mSHdaRixGW2ZvNyQkITNRP2hLR0EnZVAlRixGW2ZvNyQkITNJKysrIVt6JSkqUkYsRltmbzckJCEzNSsrKytVJz5sJEYsRltmbzckJCEzLysrKz9ELj1MRixGW2ZvNyQkITNTTExMajB6OUlGLEZbZm83JCQhMyFwbW1tYTFVbCNGLEZbZm83JCQhMz1ubW0nZVcoW0JGLEZbZm83JCQhM1MrKys1KD5NKj5GLEZbZm83JCQhM1VubW0nKXAqKXk7RixGW2ZvNyQkITNsKioqKioqNGQiUUwiRixGW2ZvNyQkITMqKSoqKioqKkhuQDA1RixGW2ZvNyQkITNxa21tbTtlQm1GZmBtRltmbzckJCEzV25tbW0ocF1aJEZmYG1GW2ZvNyQkITM/IltMTExMdSp5RmJjbUZbZm83JCQiM2NgbW1tVmhbTUZmYG1GW2ZvNyQkIjN4IioqKioqKnAhUj5sRmZgbUZbZm83JCQiM0FlbW1tSyJmJCkqRmZgbUZbZm83JCQiM1cqKioqKipmMEFFOEYsRltmbzckJCIzTSkqKioqKj5rVGg7RixGW2ZvNyQkIjN1KSoqKioqXGN0Jik+RixGW2ZvNyQkIjNlKSoqKioqZm8kZU0jRixGW2ZvNyQkIjM/S0xMOFFTcEVGLEZbZm83JCQiM3AqKioqKioqZiEpWywkRixGW2ZvNyQkIjMlZm1tbSJSJHpLJEYsRltmbzckJCIzcyoqKioqKnpRPXFPRixGW2ZvNyQkIjNtSkxMQldAIypSRixGW2ZvNyQkIjMhUWJHaGMjR2VWRixGW2ZvNyQkIjN5bSJcWEdhdXklRixGW2ZvNyQkIjMoW2hlJylHSXhMJkYsRltmbzckJCIzSXMheV5uJT0tZ0YsRltmbzckJCIzW2xFNydISHgob0YsRltmbzckJCIzRkMrc2ElZjQvKUYsRltmbzckJCIzLGFrbUwtZT8mKkYsRltmbzckJCIzcS1AWjNqXTE3RltyRltmbzckJCIzd28oKTRCIjRiZSJGW3JGW2ZvNyQkIjNHMyEqb11mKFJRI0ZbckZbZm83JCQiM1V2QlUmKXpQLVlGW3JGW2ZvNyRGYGRsRltmby1GZGRsNiNGaFtuLUZoZGw2JkZqZGxGW2VsRl5lbEZbZWwtRiY2JTdTNyRGZGVsRmRlbDckRl5mbyQhMytVZXl6JnBxbCVGW3I3JEZhZm8kITNOUCRHLVJORF8jRltyNyRGZGZvJCEzI286NFhSUyl6O0ZbcjckRmdmbyQhM2lHIT0zSE5nRSJGW3I3JEZqZm8kITMieldJKmVFTEE1RltyNyRGXWdvJCEzNTktalUseDQoKUYsNyRGYGdvJCEzbyg0P05NVXdkKEYsNyRGY2dvJCEzJzQsKlxHWUcrbkYsNyRGZmdvJCEzTWU3NyRlLUstJ0YsNyRGaWdvJCEzc1Q5bElKV3BhRiw3JEZcaG8kITN5bGcpKTMlNCFwXUYsNyRGX2hvJCEzcVgqZjBtRTtwJUYsNyRGYmhvJCEzXVgqZjBRNl5NJUYsNyRGZWhvJCEzV1gqZjBxejYsJUYsNyRGaGhvJCEzenlLKlF1UHpxJEYsNyRGW2lvJCEzRzdtQUZQTlpMRiw3JEZeaW8kITNmN21BbjwqPS8kRiw3JEZhaW8kITMhZSUqZjAqb2MnbyNGLDckRmRpbyQhMyNHaEVzO1c/UCNGLDckRmdpbyQhMzBYKmYwKkcncC0jRiw3JEZqaW8kITNHWCpmMCJSTylwIkYsNyRGXWpvJCEzJz1oRXNNMGJOIkYsNyRGYGpvJCEzOTdtQWRUbFM1Riw3JEZjam8kITNuKHlLKlFoVzVxRmZgbTckRmZqbyQhM0kqeksqUXUmR1skRmZgbTckRmlqbyQhMyY0aCUqZjA2MzclRmFhbTckRlxbcCQiM04wczFoOVcvSEZmYG03JEZfW3AkIjNeVDBTJXpMMkwnRmZgbTckRmJbcCQiM2FJMFMlUiNwI28qRmZgbTckRmVbcCQiM01gK1dwJSllI0giRiw3JEZoW3AkIjM9YCtXeicqb187Riw3JEZbXHAkIjMjb1F0RmpjaSg+Riw3JEZeXHAkIjNIYStXPk10QEJGLDckRmFccCQiM2E/bjVPbnlNRUYsNyRGZFxwJCIzTWErVypwT3EoSEYsNyRGZ1xwJCIzRSdRdEZDbiEqSCRGLDckRmpccCQiM1MzJ29iUU5ebSRGLDckRl1dcCQiM09AIyopUjUyVjQlRiw3JEZgXXAkIjNbcCcpNDNKZVdZRiw3JEZjXXAkIjMicDc9WVxQITRgRiw3JEZmXXAkIjMzP0ZjOkBlJT0nRiw3JEZpXXAkIjMpKXkrO3VBInlNKEYsNyRGXF5wJCIzaDNsNWBJVkYpKUYsNyRGX15wJCIzOzNoVCFmIj5QNkZbcjckRmJecCQiM0B1Ri8wVz47OkZbcjckRmVecCQiMyJSLExFQmhZSiNGW3I3JEZoXnAkIjNxIVFtdEVqSWAlRltyNyRGYGRsRmBkbEZbX3BGXV9wLSUrQVhFU0xBQkVMU0c2JFEhNiJGZGhwLSUlVklFV0c2JDskISNdRl1lbCQiI11GXWVsOyQhJCsiRl1lbCRGX2VsRlxlbA==Attention MAPLE semble ajouter \340 la courbe son asymptote!!!