exo6bis.mw

> Exercice 6-bis

Digits := 30

> restart:Digits:=30:

f := proc (t) options operator, arrow; arctan(t) end proc

a := 0

b := 1

N := 100

> restart:Digits:=30:N:=100:

Grace à l'inégalité de Taylor-Lagrange

> abs(f(b) -Sum(Diff(f(a),t$k)/(k!)*(b-a)^k,k=0..'N'))<=sup(abs(Diff(f(t),t$(k+1))))/((n+1)!)*(b-a)^(n+1);

abs(f(b)-(Sum((Diff(f(a), `$`(t, k)))*(b-a)^k/factorial(k), k = 0 .. N))) <= sup(abs(Diff(f(t), `$`(t, k+1))))*(b-a)^(n+1)/factorial(n+1)

On etudie donc la suite de Taylor (Taylor_n) associée à la fonction t->4/(1+t^2)

> Taylor[n]:=Sum(Diff(f(a),t$k)/(k!)*(b-a)^k,k=0..'N')=Taylor[n-1]+Diff(f(a),t$k)/(n!)*(b-a)^n;

Taylor[n] := Sum((Diff(f(a), `$`(t, k)))*(b-a)^k/factorial(k), k = 0 .. N) = Taylor[n-1]+(Diff(f(a), `$`(t, k)))*(b-a)^n/factorial(n)

> Taylor:=proc(f,a,b,N) options remember;
local S;

if N=0 then S:=f(a); else

S:=((D@@N)(f))(a)*(b-a)^N/N!+Taylor(f,a,b,N-1); fi;

S;

end:

>

>

Appliquons ceci à la fonction arctan entre 0 et 1 pour N=100 tels que ci-dessous

> f:=t->arctan(t);a:=0;b:=1;N:=100;

>

> for i from 0 to N do 4*Sum(((D@@k)(f))(a)*(b-a)^k/k!,k=0..i)=4*Taylor(f,a,b,i), erreur=evalf(4*Taylor(f,a,b,i)-Pi); od;

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 0)) = 0, erreur = -3.14159265358979323846264338328

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 1)) = 4, erreur = .85840734641020676153735661672

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 2)) = 4, erreur = .85840734641020676153735661672

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 3)) = 8/3, erreur = -.47492598692312657179597671661

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 4)) = 8/3, erreur = -.47492598692312657179597671661

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 5)) = 52/15, erreur = .32507401307687342820402328339

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 6)) = 52/15, erreur = .32507401307687342820402328339

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 7)) = 304/105, erreur = -.24635455835169800036740528804

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 8)) = 304/105, erreur = -.24635455835169800036740528804

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 9)) = 1052/315, erreur = .19808988609274644407703915640

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 10)) = 1052/315, erreur = .19808988609274644407703915640

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 11)) = 10312/3465, erreur = -.16554647754361719228659720723

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 12)) = 10312/3465, erreur = -.16554647754361719228659720723

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 13)) = 147916/45045, erreur = .14214583014869050002109510046

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 14)) = 147916/45045, erreur = .14214583014869050002109510046

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 15)) = 135904/45045, erreur = -.12452083651797616664557156621

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 16)) = 135904/45045, erreur = -.12452083651797616664557156621

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 17)) = 2490548/765765, erreur = .11077328112908265688384019850

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 18)) = 2490548/765765, erreur = .11077328112908265688384019850

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 19)) = 44257352/14549535, erreur = -0.9975303466039102732668611729e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 20)) = 44257352/14549535, erreur = -0.9975303466039102732668611729e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 21)) = 47028692/14549535, erreur = 0.9072315581579944886379007318e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 22)) = 47028692/14549535, erreur = 0.9072315581579944886379007318e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 23)) = 1023461776/334639305, erreur = -0.8318988766246142070142731812e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 24)) = 1023461776/334639305, erreur = -0.8318988766246142070142731812e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 25)) = 5385020324/1673196525, erreur = 0.7681011233753857929857268188e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 26)) = 5385020324/1673196525, erreur = 0.7681011233753857929857268188e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 27)) = 15411418072/5019589575, erreur = -0.7133803581060956884957546627e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 28)) = 15411418072/5019589575, erreur = -0.7133803581060956884957546627e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 29)) = 467009482388/145568097675, erreur = 0.6659299867214905184007970615e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 30)) = 467009482388/145568097675, erreur = 0.6659299867214905184007970615e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 31)) = 13895021563328/4512611027925, erreur = -0.6243925939236707719217835837e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 32)) = 13895021563328/4512611027925, erreur = -0.6243925939236707719217835837e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 33)) = 14442004718228/4512611027925, erreur = 0.5877286181975413492903376284e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 34)) = 14442004718228/4512611027925, erreur = 0.5877286181975413492903376284e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 35)) = 13926277743608/4512611027925, erreur = -0.5551285246596015078525195144e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 36)) = 13926277743608/4512611027925, erreur = -0.5551285246596015078525195144e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 37)) = 533322720625196/166966608033225, erreur = 0.5259525564214795732285615666e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 38)) = 533322720625196/166966608033225, erreur = 0.5259525564214795732285615666e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 39)) = 516197940314096/166966608033225, erreur = -0.4996884692195460677970794590e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 40)) = 516197940314096/166966608033225, erreur = -0.4996884692195460677970794590e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 41)) = 21831981985010836/6845630929362225, erreur = 0.4759212868780149078126766386e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 42)) = 21831981985010836/6845630929362225, erreur = 0.4759212868780149078126766386e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 43)) = 911392701638017048/294362129962575675, erreur = -0.4543112712615199759082535940e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 44)) = 911392701638017048/294362129962575675, erreur = -0.4543112712615199759082535940e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 45)) = 937558224301357108/294362129962575675, erreur = 0.4345776176273689129806352949e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 46)) = 937558224301357108/294362129962575675, erreur = 0.4345776176273689129806352949e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 47)) = 42887788022313481376/13835020108241056725, erreur = -0.4164862121598651295725561945e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 48)) = 42887788022313481376/13835020108241056725, erreur = -0.4164862121598651295725561945e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 49)) = 308120241932332116332/96845140757687397075, erreur = 0.3998403184523797683866274790e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 50)) = 308120241932332116332/96845140757687397075, erreur = 0.3998403184523797683866274790e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 51)) = 300524544618003693032/96845140757687397075, erreur = -0.3844734070378163100447450700e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 52)) = 300524544618003693032/96845140757687397075, erreur = -0.3844734070378163100447450700e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 53)) = 16315181427784945318996/5132792460157432044975, erreur = 0.3702435740942591616533681375e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 54)) = 16315181427784945318996/5132792460157432044975, erreur = 0.3702435740942591616533681375e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 55)) = 15941887430682586624816/5132792460157432044975, erreur = -0.3570291531784681110739045897e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 56)) = 15941887430682586624816/5132792460157432044975, erreur = -0.3570291531784681110739045897e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 57)) = 16302083392798897645516/5132792460157432044975, erreur = 0.3447252327864441696278497962e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 58)) = 16302083392798897645516/5132792460157432044975, erreur = 0.3447252327864441696278497962e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 59)) = 941291750334505232905544/302834755149288490653525, erreur = -0.3332408689084710846094383394e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 60)) = 941291750334505232905544/302834755149288490653525, erreur = -0.3332408689084710846094383394e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 61)) = 58630135791001973169852284/18472920064106597929865025, erreur = 0.3224968360095617022758075623e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 62)) = 58630135791001973169852284/18472920064106597929865025, erreur = 0.3224968360095617022758075623e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 63)) = 57457251977407903460019584/18472920064106597929865025, erreur = -0.3124237989110732183591130727e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 64)) = 57457251977407903460019584/18472920064106597929865025, erreur = -0.3124237989110732183591130727e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 65)) = 4507234389098153984166548/1420993851085122917681925, erreur = 0.3029608164735421662562715427e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 66)) = 4507234389098153984166548/1420993851085122917681925, erreur = 0.3029608164735421662562715427e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 67)) = 296300728665235825268431016/95206588022703235484688975, erreur = -0.2940541088995921621019374125e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 68)) = 296300728665235825268431016/95206588022703235484688975, erreur = -0.2940541088995921621019374125e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 69)) = 301819951159305578050152116/95206588022703235484688975, erreur = 0.2856560360279440697821205585e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 70)) = 301819951159305578050152116/95206588022703235484688975, erreur = 0.2856560360279440697821205585e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 71)) = 21048390180219883099622044336/6759667749611929719412917225, erreur = -0.2777242456621967752883019767e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 72)) = 21048390180219883099622044336/6759667749611929719412917225, erreur = -0.2777242456621967752883019767e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 73)) = 1563571154154499185150060905428/493455745721670869517142957425, erreur = 0.2702209598172552795062185713e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 74)) = 1563571154154499185150060905428/493455745721670869517142957425, erreur = 0.2702209598172552795062185713e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 75)) = 1537253514382676738775813281032/493455745721670869517142957425, erreur = -0.2631123735160780538271147621e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 76)) = 1537253514382676738775813281032/493455745721670869517142957425, erreur = -0.2631123735160780538271147621e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 77)) = 1562887579095490809919560967132/493455745721670869517142957425, erreur = 0.2563681459644414266923657574e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 78)) = 1562887579095490809919560967132/493455745721670869517142957425, erreur = 0.2563681459644414266923657574e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 79)) = 121494295765657090505576744573728/38983003912011998691854293636575, erreur = -0.2499609679596092062190266477e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 80)) = 121494295765657090505576744573728/38983003912011998691854293636575, erreur = -0.2499609679596092062190266477e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 81)) = 370258147135787863915523462408084/116949011736035996075562880909725, erreur = 0.2438661925342179542748005128e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 82)) = 370258147135787863915523462408084/116949011736035996075562880909725, erreur = 0.2438661925342179542748005128e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 83)) = 30263630165326248720686195856232072/9706767974090987674271719115507175, erreur = -0.2380615183091555397011031016e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 84)) = 30263630165326248720686195856232072/9706767974090987674271719115507175, erreur = -0.2380615183091555397011031016e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 85)) = 30720419246459942258298982638138292/9706767974090987674271719115507175, erreur = 0.2325267169849621073577204278e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 86)) = 30720419246459942258298982638138292/9706767974090987674271719115507175, erreur = 0.2325267169849621073577204278e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 87)) = 30274131063743115238792236931678192/9706767974090987674271719115507175, erreur = -0.2272433979575666282744634803e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 88)) = 30274131063743115238792236931678192/9706767974090987674271719115507175, erreur = -0.2272433979575666282744634803e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 89)) = 2733224736569501206949595963381387788/863902349694097903010183001280138575, erreur = 0.2221948042896243829614915759e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 90)) = 2733224736569501206949595963381387788/863902349694097903010183001280138575, erreur = 0.2221948042896243829614915759e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 91)) = 35038263089864031174338928666083676344/11230730546023272739132379016641801475, erreur = -0.2173656352708151774780688636e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 92)) = 35038263089864031174338928666083676344/11230730546023272739132379016641801475, erreur = -0.2173656352708151774780688636e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 93)) = 35521305263886537528710213785079022644/11230730546023272739132379016641801475, erreur = 0.2127418916109052526294580181e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 94)) = 35521305263886537528710213785079022644/11230730546023272739132379016641801475, erreur = 0.2127418916109052526294580181e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 95)) = 35048432398790820781799376773851999424/11230730546023272739132379016641801475, erreur = -0.2083107399680421157915946135e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 96)) = 35048432398790820781799376773851999424/11230730546023272739132379016641801475, erreur = -0.2083107399680421157915946135e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 97)) = 3444620864866802706791069063130211150028/1089380862964257455695840764614254743075, erreur = 0.2040603940525764409094363143e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 98)) = 3444620864866802706791069063130211150028/1089380862964257455695840764614254743075, erreur = 0.2040603940525764409094363143e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 99)) = 3400605476464206445954873476681150352328/1089380862964257455695840764614254743075, erreur = -0.1999800099878275994946040897e-1

4*(Sum(`@@`(D, k)(f)(0)/factorial(k), k = 0 .. 100)) = 3400605476464206445954873476681150352328/1089380862964257455695840764614254743075, erreur = -0.1999800099878275994946040897e-1

>

>