| > | Exercice 11 |
| > | Sum(1/(k^2+(n-k)^2),k=0..n)=series(Sum(1/(k^2+(n-k)^2),k=0..n),n=infinity,2); |
| > |
| > | Exercice 12 |
| > | Limit(Sum(n/(n^2+k^2),k=1..n),n=infinity)=limit(sum(n/(n^2+k^2),k=1..n),n=infinity); |
| > | Limit(Sum(1/sqrt(n^2+k^2),k=1..n),n=infinity)=limit(sum(1/sqrt(n^2+k^2),k=1..n),n=infinity); |
| > | Limit((1/n)*Sum(ln(k+n)-ln(n),k=1..n),n=infinity)=limit((1/n)*sum(ln(k+n)-ln(n),k=1..n),n=infinity); |
| > |
| > |
| > | Exercice 13 |
| > | Limit(((2*n)!/(n!*n^n))^(1/n),n=infinity)=limit(((2*n)!/(n!*n^n))^(1/n),n=infinity); |
| > | Limit((1/n)*(Product(n+k,k=1..n))^(1/n),n=infinity)=limit((1/n)*(product(n+k,k=1..n))^(1/n),n=infinity); |