exo1-4.mw

> with(linalg);

Warning, the protected names norm and trace have been redefined and unprotected

[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...

Exercice 1

question a)

> A:=matrix([[0,1,-1,1],[0,0,1,-1],[0,0,0,1],[0,0,0,0]]);

A := matrix([[0, 1, -1, 1], [0, 0, 1, -1], [0, 0, 0, 1], [0, 0, 0, 0]])

> A^2=evalm(A^2);

A^2 = matrix([[0, 0, 1, -2], [0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0]])

> A^3=evalm(A^3);

A^3 = matrix([[0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])

> A^4=evalm(A^4);

A^4 = matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])

question b)

> "si n>3", A^n=evalm(A^4);

3", A^n = matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])" align="center">

>

Exercice 2

> A:=matrix([[1,2,3],[0,1,2],[0,0,1]]);I_3:=Matrix(3,3,shape=identity);

A := matrix([[1, 2, 3], [0, 1, 2], [0, 0, 1]])

I_3 := Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

> N:=evalm(A-I_3); N=A-I_3

N := matrix([[0, 2, 3], [0, 0, 2], [0, 0, 0]])

> N^2=evalm(N^2);

N^2 = matrix([[0, 0, 4], [0, 0, 0], [0, 0, 0]])

> N^3=evalm(N^3);

N^3 = matrix([[0, 0, 0], [0, 0, 0], [0, 0, 0]])

> A^n=('N'+'I_3')^n;

A^n = (N+I_3)^n

Or N et I_3 commutent on peut appliquer la formule du binôme de Newton

Pour n>3

>

> A^n='I_3'+n*N+n*(n-1)/2* N^2;

A^n = I_3+n*N+1/2*n*(n-1)*N^2

> A^n=evalm(I_3+n*N+n*(n-1)/2* N^2);

A^n = matrix([[1, 2*n, 3*n+2*n*(n-1)], [0, 1, 2*n], [0, 0, 1]])

Exercice 3

> A:=matrix([[0,1,1],[1,0,1],[1,1,0]]);I_3:=Matrix(3,3,shape=identity);

A := matrix([[0, 1, 1], [1, 0, 1], [1, 1, 0]])

I_3 := Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

> B:=evalm(A+I_3); B=A+I_3

B := matrix([[1, 1, 1], [1, 1, 1], [1, 1, 1]])

> for i from 2 to 5 do B^i=evalm(B^i) od;

B^2 = matrix([[3, 3, 3], [3, 3, 3], [3, 3, 3]])

B^3 = matrix([[9, 9, 9], [9, 9, 9], [9, 9, 9]])

B^4 = matrix([[27, 27, 27], [27, 27, 27], [27, 27, 27]])

B^5 = matrix([[81, 81, 81], [81, 81, 81], [81, 81, 81]])

On montre par récurrence

B^3 = matrix([[9, 9, 9], [9, 9, 9], [9, 9, 9]])

> B^k=evalm(3^(k-1)*B);

B^k = matrix([[3^(k-1), 3^(k-1), 3^(k-1)], [3^(k-1), 3^(k-1), 3^(k-1)], [3^(k-1), 3^(k-1), 3^(k-1)]])

> A^n=('B'-'I_3')^n;

A^n = (B-I_3)^n

Or N et I_3 commutent on peut appliquer la formule du binôme de Newton

Pour n>3

>

> A^n=Sum(C_n^k*(-1)^(n-k) *B^k,k=0..n);

A^n = Sum(C_n^k*(-1)^(n-k)*B^k, k = 0 .. n)

> A^n=Sum(C_n^k*(-1)^(n-k) *3^(k-1)*B,k=1..n)+(-1)^n*'I_3';

A^n = (Sum(C_n^k*(-1)^(n-k)*3^(k-1)*B, k = 1 .. n))+(-1)^n*I_3

> A^n=((3-1)^n-(-1)^n)/3*B+(-1)^n*'I_3';

A^n = 1/3*(2^n-(-1)^n)*B+(-1)^n*I_3

> A^n=evalm(((3-1)^n-(-1)^n)/3*B+(-1)^n*I_3);

A^n = matrix([[1/3*2^n+2/3*(-1)^n, 1/3*2^n-1/3*(-1)^n, 1/3*2^n-1/3*(-1)^n], [1/3*2^n-1/3*(-1)^n, 1/3*2^n+2/3*(-1)^n, 1/3*2^n-1/3*(-1)^n], [1/3*2^n-1/3*(-1)^n, 1/3*2^n-1/3*(-1)^n, 1/3*2^n+2/3*(-1)^n]])

>

Exercice 4

> A:=1/4*matrix([[1,-3,3],[-3,1,3],[0,0,4]]);I_3:=Matrix(3,3,shape=identity);

A := 1/4*matrix([[1, -3, 3], [-3, 1, 3], [0, 0, 4]])

I_3 := Matrix([[1, 0, 0], [0, 1, 0], [0, 0, 1]])

> 'A'^2=evalm(A^2);

A^2 = matrix([[5/8, (-3)/8, 3/8], [(-3)/8, 5/8, 3/8], [0, 0, 1]])

> a*'A'+b*'I_3'=evalm(a*A+b*I_3);

a*A+b*I_3 = matrix([[1/4*a+b, -3/4*a, 3/4*a], [-3/4*a, 1/4*a+b, 3/4*a], [0, 0, a+b]])

En comparant les coefficients de A et aA+bI_3, on trouve a et b

> 'A'^2=('A'+'I_3')/2;

A^2 = 1/2*A+1/2*I_3

On en déduit

> 'A'*(2*'A'-'I_3')='I_3';

A*(2*A-I_3) = I_3

> 'inverse(A)'=2*'A'-'I_3';

`linalg:-linalg:-inverse`(A) = 2*A-I_3

> 'inverse(A)'=evalm(2*A-I_3);

`linalg:-linalg:-inverse`(A) = matrix([[(-1)/2, (-3)/2, 3/2], [(-3)/2, (-1)/2, 3/2], [0, 0, 1]])

> On le vérifie avec MAPLE

> 'inverse(A)'=inverse(A);

`linalg:-linalg:-inverse`(A) = matrix([[(-1)/2, (-3)/2, 3/2], [(-3)/2, (-1)/2, 3/2], [0, 0, 1]])

>

On motre par récurrence A^n=a_n* A+ b_n * I_3... d'où l'éxistence

or la famille est libre car a A+ b I_3=0 ssi

> evalm(a*A+ b* I_3)=evalm(A-A);

matrix([[1/4*a+b, -3/4*a, 3/4*a], [-3/4*a, 1/4*a+b, 3/4*a], [0, 0, a+b]]) = 0

d'où en comparant les coefficients a=b=0... d'où l'unicité

> 'A'^(n+1)='A'*(a_n*'A'+b_n*'I_3');

A^(n+1) = A*(a_n*A+b_n*I_3)

> 'A'^(n+1)=(a_n*'A'^2+b_n*'A');

A^(n+1) = a_n*A^2+b_n*A

>

> 'A'^(n+1)=(a_n*('A'+'I_3')/2+b_n*'A');

A^(n+1) = 1/2*a_n*(A+I_3)+b_n*A

> a_(n+1)*'A'+b_(n+1)*'I_3'=(a_n/2+b_n)*'A'+a_n/2*'I_3';

a_(n+1)*A+b_(n+1)*I_3 = (1/2*a_n+b_n)*A+1/2*a_n*I_3

D'où puisque (I_3,A) libre

> a_(n+1)=(a_n/2+b_n), b_(n+1)=a_n/2;

a_(n+1) = 1/2*a_n+b_n, b_(n+1) = 1/2*a_n

> a_(n+1)=(a_n+a_(n-1))/2, b_(n+1)=a_n/2;

a_(n+1) = 1/2*a_n+1/2*a_(n-1), b_(n+1) = 1/2*a_n

(a_n) suite récurrente linéaire d'ordre 2 de polynôme caractéristique associé:

> P:=X^2-X/2-1/2;

P := X^2-1/2*X-1/2

dont les racines sont:

> solve(P=0,X);

1, (-1)/2

d'où

> a_n=u*1^n+v*(-1/2)^n;

a_n = u+v*((-1)/2)^n

a_0=0 et a_1=1 d'où

> 0=u+v,1=u-v/2;

0 = u+v, 1 = u-1/2*v

> u=2/3, v=-2/3;

u = 2/3, v = (-2)/3

> a_n=2/3*(1-(-1/2)^(n));

a_n = 2/3-2/3*((-1)/2)^n

> b_n=1/3*(1-(-1/2)^(n-1));

b_n = 1/3-1/3*((-1)/2)^(n-1)

donc

> 'A'^n=2/3*(1-(-1/2)^(n))*'A'+1/3*(1-(-1/2)^(n-1))*'I_3';

A^n = 2/3*(1-((-1)/2)^n)*A+1/3*(1-((-1)/2)^(n-1))*I_3

le reste de la division euclidienne de X^n par P est

> for n from 1 to 5 do 'n'=n,"reste de X^n par P","=",rem(X^n,P,X); od;

>

n = 1,

n = 2,

n = 3,

n = 4,

n = 5,

on motre par récurrence que

A^n = (B-I_3)^n

> "reste de X^n par P","=",a_nX+b_n;

En fait il suffit d'évaluer

> 'X^n'=Q*P+u_nX+v_n;

X^n = Q*(X^2-1/2*X-1/2)+u_nX+v_n

en 1 et -1/2 (les racines de P) et on trouve

> 0=u_n+v_n,1=u_n-v_n/2;

0 = u_n+v_n, 1 = u_n-1/2*v_n

D'où vu les conditions initiales

> u_n=a_n,v_n=b_n;

u_n = a_n, v_n = b_n

>