| > | restart;with(linalg); |
Warning, the protected names norm and trace have been redefined and unprotected
![]()
![]()
![]()
| > | Exercice 2 |
question a)
| > | j:=exp(I*2*Pi/3):j:='j':m:='m':x:='x':y:='y':z:='z': |
| > | S:=matrix(3,4,[[x,j*y,z,3],[j*x,j^2*y,z,m],[j^2*x,y,z,2*m]]); |
| > | S:=Transvect_ligne(2,-j,1,S); |
| > | S:=Transvect_ligne(3,-j^2,1,S); |
| > | S:=Permut_colonne(2,3,S); |
| > | evalm(S); |
| > | S:=Dilat_ligne(1/(1-j),2,S); |
| > | S:=Transvect_ligne(3,j^2-1,2,S); |
| > | S[3,2]:=0:S[3,3]:=0:S[2,2]:=z: |
| > | evalm(S); |
| > |
Equation de compatibilité:
| > | Eq_comp:=S[3,4]=0; |
| > | m:=solve(Eq_comp,m); |
y est un paramètre libre et
| > | z:=simplify(S[2,4]);
|
| > | x:=3-z-j*y; |
| > |
| > |
question b)
| > | l:='l':lambda:='lambda':l:=lambda:a:='a':x:='x':y:='y':z:='z': |
| > | S0:=matrix(4,5,[[l*x,y,z,t,a^3],[x,l*y,z,t,a^2],[x,y,l*z,t,a],[x,y,z,l*t,1]]); |
| > | A0:=matrix(4,4,[[l,1,1,1],[1,l,1,1],[1,1,l,1],[1,1,1,l]]); |
| > |
1er Cas
| > | On suppose l, "différent de ", 0,1,-1,-2,-3; |
| > | S:=evalm(S0); |
| > | S:=Dilat_ligne(1/l,1,S); |
| > | S:=Transvect_ligne(2,-1,1,S):S:=Transvect_ligne(3,-1,1,S):S:=Transvect_ligne(4,-1,1,S); |
| > | S:=Dilat_ligne(l/(l^2-1),2,S); |
| > |
| > | S:=Transvect_ligne(3,1/l-1,2,S):S:=Transvect_ligne(4,1/l-1,2,S); |
| > | S:=Dilat_ligne(z/S[3,3],3,S); |
| > | S:=Transvect_ligne(4,-(l-1)/(l+1),3,S); |
| > | S:=Dilat_ligne(t/S[4,4],4,S); |
| > | S:=Transvect_ligne(3,-S[3,4]/t,4,S):S:=Transvect_ligne(2,-S[2,4]/t,4,S):S:=Transvect_ligne(1,-S[1,4]/t,4,S); |
| > | S:=Transvect_ligne(2,-S[2,3]/z,3,S):S:=Transvect_ligne(1,-S[1,3]/z,3,S); |
| > | S:=Transvect_ligne(1,-S[1,2]/y,2,S); |
Voilà la solution du système de CRAMER
| > |
2eme Cas
| > | On suppose lambda=0; |
| > | A:=subs(lambda=0,evalm(A0));
|
| > | Gsyst_cramer(A,[x,y,z,t],[a^3,a^2,a,1]); |
", L[1], matrix([[x+z+t], [y+z+t], [x+y+t], [x+y+z]]), "=", matrix([[a^2], [a^3], [a], [1]])" align="center">
| > |
3eme Cas
| > | On suppose lambda=1; |
| > | A:=subs(lambda=1,evalm(A0));
|
| > | Gsyst(A,[x,y,z,t],[a^3,a^2,a,1]): |
", C[3], matrix([[x, z, y, t], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]), "=", matrix([[a^3], [a^2-a^3], [a-a^3], [1-a^3]])" align="center">
", C[4], matrix([[x, t, y, z], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]), "=", matrix([[a^3], [a^2-a^3], [a-a^3], [1-a^3]])" align="center">
", C[4], matrix([[x, t, z, y], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]), "=", matrix([[a^3], [a^2-a^3], [a-a^3], [1-a^3]])" align="center">
| > | D'où nécessairement a=1; |
| > | Et on trouve l'hyperplan x+y+z+t=1; |
| > |
4eme Cas
| > | On suppose lambda=-1; |
| > | A:=subs(lambda=-1,evalm(A0));
|
| > | Gsyst_cramer(A,[x,y,z,t],[a^3,a^2,a,1]): |
", L[2], matrix([[x-y-z-t], [2*y+2*t], [2*z+2*t], [2*y+2*z]]), "=", matrix([[-a^3], [a+a^3], [a^2+a^3], [1+a^3]])" align="center">
| > |
| > |
5eme Cas
| > | On suppose lambda=-2; |
| > | A:=subs(lambda=-2,evalm(A0));
|
| > | Gsyst_cramer(A,[x,y,z,t],[a^3,a^2,a,1]): |
", L[3], matrix([[x-1/2*y-1/2*z-1/2*t], [y-z-t], [3*z], [3*t]]), "=", matrix([[-1/2*a^3], [-2/3*a^2-1/3*a^3], [1+a^3+a^2], [a+a^3+a^2]])" align="center">
| > |
6eme Cas
| > | On suppose lambda=-3; |
| > | A:=subs(lambda=-3,evalm(A0));
|
| > | Gsyst(A,[x,y,z,t],[a^3,a^2,a,1]): |
| > | last:=matrix([[-1/2*a^3+t-1/4*a-1/4*a^2], [-1/2*a^2-1/4*a^3+t-1/4*a], [-1/2*a-1/4*a^3-1/4*a^2+t], [t]]); |
Equation de compatibilité:
| > | Eq_comp:=1+a+a^2+a^3=0; |
| > | a_possible:=solve(Eq_comp,a); |
D'où trois espaces affines possibles:
| > | matrix([[x], [y], [z], [t]])=subs(a=a_possible[1],evalm(last));
|
| > | matrix([[x], [y], [z], [t]])=subs(a=a_possible[2],evalm(last)); |
| > | matrix([[x], [y], [z], [t]])=subs(a=a_possible[3],evalm(last)); |
Seule la solution particulière change la direction vectorielle est dirigé par le vecteur
| > | u:=[1,1,1,1]; |
Autre Méthode:
1er Cas
| > | On suppose l, "différent de ", 1,-3; |
| > | S:=evalm(S0); |
| > | S:=Permut_ligne(1,2,S); |
| > | S:=Transvect_ligne(2,-l,1,S):S:=Transvect_ligne(3,-1,1,S):S:=Transvect_ligne(4,-1,1,S); |
| > | S:=Permut_ligne(2,3,S); |
| > | S:=Dilat_ligne(1/(1-l),2,S); |
| > | S:=Transvect_ligne(3,l^2-1,2,S):S:=Transvect_ligne(4,l-1,2,S); |
| > | S:=Permut_ligne(3,4,S); |
| > | S:=Dilat_ligne(1/(1-l),3,S); |
| > | S:=Transvect_ligne(4,-(2-l-l^2),3,S); |
| > | S:=Dilat_ligne(1/(3-2*l-l^2),4,S); |
| > | S:=Transvect_ligne(3,1,4,S):S:=Transvect_ligne(1,-1,4,S); |
| > | S:=Transvect_ligne(2,1,3,S):S:=Transvect_ligne(1,-1,3,S); |
| > | S:=Transvect_ligne(1,-l,2,S); |
Voilà la solution du système de CRAMER dans le cas lambda différent de 1 et -3
| > |