exo2.mw

> restart;with(linalg);

Warning, the protected names norm and trace have been redefined and unprotected

[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...

> Exercice 2

question a)

> j:=exp(I*2*Pi/3):j:='j':m:='m':x:='x':y:='y':z:='z':

> S:=matrix(3,4,[[x,j*y,z,3],[j*x,j^2*y,z,m],[j^2*x,y,z,2*m]]);

S := matrix([[x, j*y, z, 3], [j*x, j^2*y, z, m], [j^2*x, y, z, 2*m]])

> S:=Transvect_ligne(2,-j,1,S);

S := matrix([[x, j*y, z, 3], [0, 0, z-j*z, m-3*j], [j^2*x, y, z, 2*m]])

> S:=Transvect_ligne(3,-j^2,1,S);

S := matrix([[x, j*y, z, 3], [0, 0, z-j*z, m-3*j], [0, y-j^3*y, z-j^2*z, 2*m-3*j^2]])

> S:=Permut_colonne(2,3,S);

S := matrix([[x, z, j*y, 3], [0, z-j*z, 0, m-3*j], [0, z-j^2*z, y-j^3*y, 2*m-3*j^2]])

> evalm(S);

matrix([[x, z, j*y, 3], [0, z-j*z, 0, m-3*j], [0, z-j^2*z, y-j^3*y, 2*m-3*j^2]])

> S:=Dilat_ligne(1/(1-j),2,S);

S := matrix([[x, z, j*y, 3], [0, z, 0, (-m+3*j)/(-1+j)], [0, z-j^2*z, y-j^3*y, 2*m-3*j^2]])

> S:=Transvect_ligne(3,j^2-1,2,S);

S := matrix([[x, z, j*y, 3], [0, z, 0, (-m+3*j)/(-1+j)], [0, 0, y-j^3*y, 3*j-m*j+m]])

> S[3,2]:=0:S[3,3]:=0:S[2,2]:=z:

> evalm(S);

matrix([[x, z, j*y, 3], [0, z, 0, (-m+3*j)/(-1+j)], [0, 0, 0, 3*j-m*j+m]])

>

Equation de compatibilité:

> Eq_comp:=S[3,4]=0;

Eq_comp := 3*j-m*j+m = 0

> m:=solve(Eq_comp,m);

m := 3*j/(-1+j)

y est un paramètre libre et

> z:=simplify(S[2,4]);

z := 3*j*(-2+j)/(-1+j)^2

> x:=3-z-j*y;

x := 3-3*j*(-2+j)/(-1+j)^2-j*y

>

>

question b)

> l:='l':lambda:='lambda':l:=lambda:a:='a':x:='x':y:='y':z:='z':

> S0:=matrix(4,5,[[l*x,y,z,t,a^3],[x,l*y,z,t,a^2],[x,y,l*z,t,a],[x,y,z,l*t,1]]);

S0 := matrix([[lambda*x, y, z, t, a^3], [x, lambda*y, z, t, a^2], [x, y, lambda*z, t, a], [x, y, z, lambda*t, 1]])

> A0:=matrix(4,4,[[l,1,1,1],[1,l,1,1],[1,1,l,1],[1,1,1,l]]);

A0 := matrix([[lambda, 1, 1, 1], [1, lambda, 1, 1], [1, 1, lambda, 1], [1, 1, 1, lambda]])

>

1er Cas

> On suppose l, "différent de ", 0,1,-1,-2,-3;

lambda,

> S:=evalm(S0);

> S:=Dilat_ligne(1/l,1,S);

S := matrix([[x, y/lambda, z/lambda, t/lambda, a^3/lambda], [x, lambda*y, z, t, a^2], [x, y, lambda*z, t, a], [x, y, z, lambda*t, 1]])

> S:=Transvect_ligne(2,-1,1,S):S:=Transvect_ligne(3,-1,1,S):S:=Transvect_ligne(4,-1,1,S);

S := matrix([[x, y/lambda, z/lambda, t/lambda, a^3/lambda], [0, y*(lambda^2-1)/lambda, z*(lambda-1)/lambda, t*(lambda-1)/lambda, -a^2*(-lambda+a)/lambda], [0, y*(lambda-1)/lambda, z*(lambda^2-1)/lambd...

> S:=Dilat_ligne(l/(l^2-1),2,S);

S := matrix([[x, y/lambda, z/lambda, t/lambda, a^3/lambda], [0, y, z/(lambda+1), t/(lambda+1), -a^2*(-lambda+a)/(lambda^2-1)], [0, y*(lambda-1)/lambda, z*(lambda^2-1)/lambda, t*(lambda-1)/lambda, -a*(...

>

> S:=Transvect_ligne(3,1/l-1,2,S):S:=Transvect_ligne(4,1/l-1,2,S);

S := matrix([[x, y/lambda, z/lambda, t/lambda, a^3/lambda], [0, y, z/(lambda+1), t/(lambda+1), -a^2*(-lambda+a)/(lambda^2-1)], [0, 0, z*(lambda^2+lambda-2)/(lambda+1), t*(lambda-1)/(lambda+1), -(-lamb...

> S:=Dilat_ligne(z/S[3,3],3,S);

S := matrix([[x, y/lambda, z/lambda, t/lambda, a^3/lambda], [0, y, z/(lambda+1), t/(lambda+1), -a^2*(-lambda+a)/(lambda^2-1)], [0, 0, z, t/(lambda+2), -(-lambda+a^2+a-1)*a/(lambda^2+lambda-2)], [0, 0,...

> S:=Transvect_ligne(4,-(l-1)/(l+1),3,S);

S := matrix([[x, y/lambda, z/lambda, t/lambda, a^3/lambda], [0, y, z/(lambda+1), t/(lambda+1), -a^2*(-lambda+a)/(lambda^2-1)], [0, 0, z, t/(lambda+2), -(-lambda+a^2+a-1)*a/(lambda^2+lambda-2)], [0, 0,...

> S:=Dilat_ligne(t/S[4,4],4,S);

S := matrix([[x, y/lambda, z/lambda, t/lambda, a^3/lambda], [0, y, z/(lambda+1), t/(lambda+1), -a^2*(-lambda+a)/(lambda^2-1)], [0, 0, z, t/(lambda+2), -(-lambda+a^2+a-1)*a/(lambda^2+lambda-2)], [0, 0,...

> S:=Transvect_ligne(3,-S[3,4]/t,4,S):S:=Transvect_ligne(2,-S[2,4]/t,4,S):S:=Transvect_ligne(1,-S[1,4]/t,4,S);

S := matrix([[x, y/lambda, z/lambda, 0, (a^3*lambda^2+2*a^3*lambda-2*a^3-lambda+a-2+a^2)/(lambda*(lambda^2+2*lambda-3))], [0, y, z/(lambda+1), 0, -(-a^2*lambda^2+a^3*lambda-3*a^2*lambda+lambda+2*a^3+2...

> S:=Transvect_ligne(2,-S[2,3]/z,3,S):S:=Transvect_ligne(1,-S[1,3]/z,3,S);

S := matrix([[x, y/lambda, 0, 0, (a^3*lambda^2+2*a^3*lambda-a^3-lambda-a-1+2*a^2-a*lambda)/(lambda*(lambda^2+2*lambda-3))], [0, y, 0, 0, -(-a^2*lambda+a^3+1+a-2*a^2)/(lambda^2+2*lambda-3)], [0, 0, z, ...

> S:=Transvect_ligne(1,-S[1,2]/y,2,S);

S := matrix([[x, 0, 0, 0, (a^3*lambda+2*a^3-1-a-a^2)/(lambda^2+2*lambda-3)], [0, y, 0, 0, -(-a^2*lambda+a^3+1+a-2*a^2)/(lambda^2+2*lambda-3)], [0, 0, z, 0, -(-a*lambda+a^2+1-2*a+a^3)/(lambda^2+2*lambd...

Voilà la solution du système de CRAMER

>

2eme Cas

> On suppose lambda=0;

lambda = 0

> A:=subs(lambda=0,evalm(A0));

A := matrix([[0, 1, 1, 1], [1, 0, 1, 1], [1, 1, 0, 1], [1, 1, 1, 0]])

> Gsyst_cramer(A,[x,y,z,t],[a^3,a^2,a,1]);

L[2], ", L[1], matrix([[x+z+t], [y+z+t], [x+y+t], [x+y+z]]), "=", matrix([[a^2], [a^3], [a], [1]])" align="center">

L[3],

L[4],

L[3],

L[4],

L[3],

L[4],

L[4],

L[1],

L[2],

L[3],

L[1],

L[2],

>

3eme Cas

> On suppose lambda=1;

lambda = 1

> A:=subs(lambda=1,evalm(A0));

A := matrix([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]])

> Gsyst(A,[x,y,z,t],[a^3,a^2,a,1]):

L[2],

L[3],

L[4],

C[2], ", C[3], matrix([[x, z, y, t], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]), "=", matrix([[a^3], [a^2-a^3], [a-a^3], [1-a^3]])" align="center">

C[2], ", C[4], matrix([[x, t, y, z], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]), "=", matrix([[a^3], [a^2-a^3], [a-a^3], [1-a^3]])" align="center">

C[3], ", C[4], matrix([[x, t, z, y], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]), "=", matrix([[a^3], [a^2-a^3], [a-a^3], [1-a^3]])" align="center">

a^2-a^3 = 0

a-a^3 = 0

1-a^3 = 0

> D'où nécessairement a=1;

a = 1

> Et on trouve l'hyperplan x+y+z+t=1;

x+y+z+t = 1

>

4eme Cas

> On suppose lambda=-1;

lambda = -1

> A:=subs(lambda=-1,evalm(A0));

A := matrix([[-1, 1, 1, 1], [1, -1, 1, 1], [1, 1, -1, 1], [1, 1, 1, -1]])

> Gsyst_cramer(A,[x,y,z,t],[a^3,a^2,a,1]):

L[1],

L[2],

L[3],

L[4],

L[3], ", L[2], matrix([[x-y-z-t], [2*y+2*t], [2*z+2*t], [2*y+2*z]]), "=", matrix([[-a^3], [a+a^3], [a^2+a^3], [1+a^3]])" align="center">

L[2],

L[4],

L[3],

L[4],

L[4],

L[1],

L[2],

L[3],

L[1],

L[1],

>

>

5eme Cas

> On suppose lambda=-2;

lambda = -2

> A:=subs(lambda=-2,evalm(A0));

A := matrix([[-2, 1, 1, 1], [1, -2, 1, 1], [1, 1, -2, 1], [1, 1, 1, -2]])

> Gsyst_cramer(A,[x,y,z,t],[a^3,a^2,a,1]):

L[1],

L[2],

L[3],

L[4],

L[2],

L[3],

L[4],

L[4], ", L[3], matrix([[x-1/2*y-1/2*z-1/2*t], [y-z-t], [3*z], [3*t]]), "=", matrix([[-1/2*a^3], [-2/3*a^2-1/3*a^3], [1+a^3+a^2], [a+a^3+a^2]])" align="center">

L[3],

L[4],

L[1],

L[2],

L[1],

L[2],

L[1],

>

6eme Cas

> On suppose lambda=-3;

lambda = -3

> A:=subs(lambda=-3,evalm(A0));

A := matrix([[-3, 1, 1, 1], [1, -3, 1, 1], [1, 1, -3, 1], [1, 1, 1, -3]])

> Gsyst(A,[x,y,z,t],[a^3,a^2,a,1]):

L[1],

L[2],

L[3],

L[4],

L[2],

L[3],

L[4],

L[3],

L[4],

1+a+a^2+a^3 = 0

L[1],

L[2],

L[1],

> last:=matrix([[-1/2*a^3+t-1/4*a-1/4*a^2], [-1/2*a^2-1/4*a^3+t-1/4*a], [-1/2*a-1/4*a^3-1/4*a^2+t], [t]]);

last := matrix([[-1/2*a^3+t-1/4*a-1/4*a^2], [-1/2*a^2-1/4*a^3+t-1/4*a], [-1/2*a-1/4*a^3-1/4*a^2+t], [t]])

Equation de compatibilité:

> Eq_comp:=1+a+a^2+a^3=0;

Eq_comp := 1+a+a^2+a^3 = 0

> a_possible:=solve(Eq_comp,a);

a_possible := -1, I, -I

D'où trois espaces affines possibles:

> matrix([[x], [y], [z], [t]])=subs(a=a_possible[1],evalm(last));

matrix([[x], [y], [z], [t]]) = matrix([[1/2+t], [t], [1/2+t], [t]])

> matrix([[x], [y], [z], [t]])=subs(a=a_possible[2],evalm(last));

matrix([[x], [y], [z], [t]]) = matrix([[(1/4+1/4*I)+t], [1/2+t], [(1/4-1/4*I)+t], [t]])

> matrix([[x], [y], [z], [t]])=subs(a=a_possible[3],evalm(last));

matrix([[x], [y], [z], [t]]) = matrix([[(1/4-1/4*I)+t], [1/2+t], [(1/4+1/4*I)+t], [t]])

Seule la solution particulière change la direction vectorielle est dirigé par le vecteur

> u:=[1,1,1,1];

u := [1, 1, 1, 1]

Autre Méthode:

1er Cas

> On suppose l, "différent de ", 1,-3;

lambda,

> S:=evalm(S0);

S := matrix([[lambda*x, y, z, t, a^3], [x, lambda*y, z, t, a^2], [x, y, lambda*z, t, a], [x, y, z, lambda*t, 1]])

> S:=Permut_ligne(1,2,S);

S := matrix([[x, lambda*y, z, t, a^2], [lambda*x, y, z, t, a^3], [x, y, lambda*z, t, a], [x, y, z, lambda*t, 1]])

> S:=Transvect_ligne(2,-l,1,S):S:=Transvect_ligne(3,-1,1,S):S:=Transvect_ligne(4,-1,1,S);

S := matrix([[x, lambda*y, z, t, a^2], [0, y-lambda^2*y, z-lambda*z, t-lambda*t, a^3-lambda*a^2], [0, y-lambda*y, lambda*z-z, 0, a-a^2], [0, y-lambda*y, 0, lambda*t-t, 1-a^2]])

> S:=Permut_ligne(2,3,S);

S := matrix([[x, lambda*y, z, t, a^2], [0, y-lambda*y, lambda*z-z, 0, a-a^2], [0, y-lambda^2*y, z-lambda*z, t-lambda*t, a^3-lambda*a^2], [0, y-lambda*y, 0, lambda*t-t, 1-a^2]])

> S:=Dilat_ligne(1/(1-l),2,S);

S := matrix([[x, lambda*y, z, t, a^2], [0, y, -z, 0, a*(-1+a)/(-1+lambda)], [0, y-lambda^2*y, z-lambda*z, t-lambda*t, a^3-lambda*a^2], [0, y-lambda*y, 0, lambda*t-t, 1-a^2]])

> S:=Transvect_ligne(3,l^2-1,2,S):S:=Transvect_ligne(4,l-1,2,S);

S := matrix([[x, lambda*y, z, t, a^2], [0, y, -z, 0, a*(-1+a)/(-1+lambda)], [0, 0, 2*z-lambda*z-z*lambda^2, t-lambda*t, (-lambda+a+a^2-1)*a], [0, 0, -(-1+lambda)*z, lambda*t-t, 1-a]])

> S:=Permut_ligne(3,4,S);

S := matrix([[x, lambda*y, z, t, a^2], [0, y, -z, 0, a*(-1+a)/(-1+lambda)], [0, 0, -(-1+lambda)*z, lambda*t-t, 1-a], [0, 0, 2*z-lambda*z-z*lambda^2, t-lambda*t, (-lambda+a+a^2-1)*a]])

> S:=Dilat_ligne(1/(1-l),3,S);

S := matrix([[x, lambda*y, z, t, a^2], [0, y, -z, 0, a*(-1+a)/(-1+lambda)], [0, 0, z, -t, (-1+a)/(-1+lambda)], [0, 0, 2*z-lambda*z-z*lambda^2, t-lambda*t, (-lambda+a+a^2-1)*a]])

> S:=Transvect_ligne(4,-(2-l-l^2),3,S);

S := matrix([[x, lambda*y, z, t, a^2], [0, y, -z, 0, a*(-1+a)/(-1+lambda)], [0, 0, z, -t, (-1+a)/(-1+lambda)], [0, 0, 0, 3*t-2*lambda*t-t*lambda^2, -lambda+a^2+a^3-2+a]])

> S:=Dilat_ligne(1/(3-2*l-l^2),4,S);

S := matrix([[x, lambda*y, z, t, a^2], [0, y, -z, 0, a*(-1+a)/(-1+lambda)], [0, 0, z, -t, (-1+a)/(-1+lambda)], [0, 0, 0, t, -(-lambda+a^2+a^3-2+a)/(-3+2*lambda+lambda^2)]])

> S:=Transvect_ligne(3,1,4,S):S:=Transvect_ligne(1,-1,4,S);

S := matrix([[x, lambda*y, z, 0, (-2*a^2+2*lambda*a^2+a^2*lambda^2-lambda+a^3-2+a)/(-3+2*lambda+lambda^2)], [0, y, -z, 0, a*(-1+a)/(-1+lambda)], [0, 0, z, 0, -(-lambda*a-2*a+1+a^3+a^2)/(-3+2*lambda+la...

> S:=Transvect_ligne(2,1,3,S):S:=Transvect_ligne(1,-1,3,S);

S := matrix([[x, lambda*y, 0, 0, (-a^2+2*lambda*a^2+a^2*lambda^2-lambda+2*a^3-1-a-lambda*a)/(-3+2*lambda+lambda^2)], [0, y, 0, 0, -(-lambda*a^2+a^3+a+1-2*a^2)/(-3+2*lambda+lambda^2)], [0, 0, z, 0, -(-...

> S:=Transvect_ligne(1,-l,2,S);

S := matrix([[x, 0, 0, 0, (-a^2+2*a^3-1-a+lambda*a^3)/(-3+2*lambda+lambda^2)], [0, y, 0, 0, -(-lambda*a^2+a^3+a+1-2*a^2)/(-3+2*lambda+lambda^2)], [0, 0, z, 0, -(-lambda*a-2*a+1+a^3+a^2)/(-3+2*lambda+l...

Voilà la solution du système de CRAMER dans le cas lambda différent de 1 et -3

>