exo2e.mw

> restart;with(plots):with(plottools):with(linalg);

Warning, the name changecoords has been redefined

Warning, the assigned name arrow now has a global binding

Warning, the protected names norm and trace have been redefined and unprotected

[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...

>

Exercice 2

question e)

> f:=(x,y)->(x^4*y^4)/(x^2+y^4)^3;

f := proc (x, y) options operator, arrow; x^4*y^4/(x^2+y^4)^3 end proc

> Limit('f'(x,x), x=0)=limit(f(x,x),x=0);

Limit(f(x, x), x = 0) = 0

> Limit('f'(x^2,x), x=0)=limit(f(x^2,x),x=0);

Limit(f(x^2, x), x = 0) = 1/8

Les limites suivants les courbes y=x et x=y^2  différent, il n'y a donc pas de limite globale

Profil suivant y=x

> coupe(f,[-1,1],[-1,1],[t,t],[-1,1],x-y,-0.1,100);

[Plot]

> coupe_plan(f,[t,t],[-1,1]); courbe t->f(t,t)

[Plot]

Profil suivant y^2=x

> coupe(f,[-1,1],[-1,1],[t^2,t],[-1,1],y^2-x,-0.1,100);

[Plot]

> coupe_plan(f,[t^2,t],[-1,1]); courbe t->f(t^2,t)

[Plot]

Représentation

> coupe(f,[-1,1],[-1,1],[t^2,t],[-1,1],1,-0.1,50);

[Plot]

> profily:=theta->t;profilx:=theta->(1-theta)*t+theta*t^2;t='t':

profily := proc (theta) options operator, arrow; t end proc

profilx := proc (theta) options operator, arrow; (1-theta)*t+theta*t^2 end proc

Voici l'évolution de la route tracée sur la surface lorsque le trcé plan passe de la droite y=x à la courbe y=x^3

> profil_courbe(f,profilx,profily,[-1,1],[0,1],0);

[Plot]

> F:=proc(theta)  coupe_plan(f,[profilx(theta),profily(theta)],[-1,1]); end:

> animate(F,[theta],theta=0..1, axes=normal,frames=41);

[Plot]

>