exo2g.mw

> restart;with(plots):with(plottools):with(linalg);

Warning, the name changecoords has been redefined

Warning, the assigned name arrow now has a global binding

Warning, the protected names norm and trace have been redefined and unprotected

[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...[BlockDiagonal, GramSchmidt, JordanBlock, LUdecomp, QRdecomp, Wronskian, addcol, addrow, adj, adjoint, angle, augment, backsub, band, basis, bezout, blockmatrix, charmat, charpoly, cholesky, col, cold...

>

Exercice 2

question g)

> f:=(x,y)->(x*y)/(x+y);

f := proc (x, y) options operator, arrow; x*y/(x+y) end proc

> Limit('f'(x,0), x=0)=limit(f(x,0),x=0);

Limit(f(x, 0), x = 0) = 0

> Limit('f'(x,-x+x^2), x=0)=limit(f(x,x^2-x),x=0);

Limit(f(x, x^2-x), x = 0) = -1

Les limites suivants les courbes y=0 et y=x^2-x  différent, il n'y a donc pas de limite globale

Profil suivant y=0

> coupe(f,[-0.1,1],[-1,1],[t,0],[-1,1],-y,-0.1,100);

[Plot]

> coupe_plan(f,[t,0],[-1,1]); courbe t->f(t,0)

[Plot]

Profil suivant y=x^2-x

> coupe(f,[-1,1],[-1,1],[t,-t+t^2],[-1,1],-y+x^2-x,-10^9,100);

[Plot]

> coupe_plan(f,[t,-t+t^2],[-1,1]); courbe t->f(t,-t+t^2)

[Plot]

Représentation

> coupe(f,[-1,1],[-1,1],[t,-t+t^2],[-0.5,1],1,-0.1,50);

[Plot]

> profilx:=theta->t;profilx:=theta->(1-theta)*0+theta*(-t+t^2);t='t':

profilx := proc (theta) options operator, arrow; t end proc

profilx := proc (theta) options operator, arrow; (1-theta)*0+theta*(-t+t^2) end proc

Voici l'évolution de la route tracée sur la surface lorsque le trcé plan passe de la droite y=x à la courbe y=x^3

> profil_courbe(f,profilx,profily,[-0.5,1],[0,1],-5);

[Plot]

> F:=proc(theta)  coupe_plan(f,[profilx(theta),profily(theta)],[-0.5,1]); end:

> animate(F,[theta],theta=0..1, axes=normal,frames=41);

[Plot]

>